Phân tích đa thức thành nhân tử
a) 8x^2y - 18y
b) 3x^3 + 6x^2 + 3x - 12xy^2
phân tích các đa thức sau thành nhân tử
a) 8x^3 - 1/125y^3
b) -x^3 + 6x^2y - 12xy^2 + 8y^3
a
\(8x^3-\dfrac{1}{125}y^3\\ =\left(2x\right)^3-\left(\dfrac{1}{5}y\right)^3\\ =\left(2x-\dfrac{1}{5}y\right)\left[\left(2x\right)^2+2x.\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\right]\\ =\left(2x-\dfrac{1}{5}y\right)\left(4x^2+\dfrac{2}{5}xy+\dfrac{1}{25}y^2\right)\)
b
\(-x^3+6x^2y-12xy^2+8y^3\\ =-\left(x^3-6x^2y+12xy^2-8y^3\right)\\ =-\left(x^3-3.2y.x^2+3.\left(2y\right)^2.x-\left(2y\right)^3\right)\\ =-\left(x-2y\right)^3\\ =-\left(x-2y\right)\left(x-2y\right)\left(x-2y\right)\)
a: 8x^3-1/125y^3
=(2x)^3-(1/5y)^3
=(2x-1/5y)(4x^2+2/5xy+1/25y^2)
b: =(2y-x)^3
a) \(8x^3-\dfrac{1}{125}y^3\)
\(=\left(2x\right)^3-\left(\dfrac{1}{5}y\right)^3\)
\(=\left(2x-\dfrac{1}{5}y\right)\left[\left(2x\right)^2+2x\cdot\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\right]\)
\(=\left(2x-\dfrac{1}{5}y\right)\left(4x^2+\dfrac{2}{5}xy+\dfrac{1}{24}y^2\right)\)
b) \(-x^3+6x^2y-12xy^2+8y^3\)
\(=-\left(x^3-6x^2y+12xy^2-8y^2\right)\)
\(=-\left(x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\right)\)
\(=-\left(x-2y\right)^3\)
phân tích đa thức sau thành nhân tử
a\(12x^3y-24x^2y^2+12xy^3\)
b\(x^2-6x+xy-6y\)
c\(2x^2+2xy-x-y\)
d\(ax-2x-a^2+2a\)
e\(x^3-3x^2+3x-1\)
f\(3x^2-3y^2-12x-12y\)
b: \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
c: \(2x^2+2xy-x-y\)
\(=2x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Phân tích đa thức thành nhân tử A. 4x^2-12xy+9y^2-8x+12y B. 3x^2+20x-7 C. (3x-1)^4+2(9y^2-6x+1)+1 D. 2x^3-3x^2+2x-1
a: =(2x-3y)^2-4(2x-3y)
=(2x-3y)(2x-3y-4)
b: =3x^2+21x-x-7
=(x+7)(3x-1)
c: =(3x-1)^4+2(3x-1)^2+1
=[(3x-1)^2+1]^2
d: =2x^3-2x^2-x^2+x+x-1
=(x-1)(2x^2-x+1)
Bài 1: Phân tích đa thức thành nhân tử
a)\(12xy^2-8x^2y\)
b)\(3x+3y-x^2-xy\)
c)\(x^2-6y-y^2+9\)
bài 2: tìm x
a) \(2x^2-8+x\left(3-2x\right)=15\)
b)\(x^2-9-2\left(x+3\right)=0\)
c) \(7x+x^2=30\)
Giusp mik vs
Mai mik nộp rồi
a. 12xy2 - 8x2y = 4xy . (3y - 2x)
b. 3x + 3y - x2 - xy = (3x + 3y) - (x2 + xy) = 3 . (x + y) - x . (x + y) = (x + y)(3 - x)
Bài 2:
a: =>2x^2-8+3x-2x^2=15
=>3x=23
=>x=23/3
b: \(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)
=>x=5 hoặc x=-3
c: =>x^2+7x-30=0
=>(x+10)(x-3)=0
=>x=3 hoặc x=-10
Bài 2. Phân tích các đa thức sau thành nhân tử: 3x^3+6x^2+3x-12xy^2
3x3 + 6x2 + 3x - 12xy2
= 3x(x2 + 2x + 1 - 4y2)
= 3x[(x + 1)2 - (2y)2]
= 3x(x + 1 + 2y)(x - 2y + 1)
\(3x^3+6x^2+3x-12xy^2\)
\(=3x\left(x^2+2x+1-4y^2\right)\)
\(=3x\left[\left(x+1\right)^2-\left(2y\right)^2\right]\)
\(=3x\left(x+1-2y\right)\left(x+1+2y\right)\)
Bài 1 :phân tích nhân đa thức sau thành nhân tử
a) 3x^2 -9
b) 1/2x^2 - 2y^2
c) 3x^2 - 12y^2
d) 1/3x^2y^2 - 3x^2
a: 3x^2-9
=3*x^2-3*3
=3(x^2-3)
b: 1/2x^2-2y^2
=1/2(x^2-4y^2)
=1/2(x-2y)(x+2y)
c: 3x^2-12y^2
=3(x^2-4y^2)
=3(x-2y)(x+2y)
d: 1/3x^2y^2-3x^2
=1/3x^2(y^2-9)
=1/3x^2(y-3)(y+3)
Bài 1: Phân tích đa thức thành nhân tử
a) (6x+3)-(2x-5)(2x+1)
b) (3x-2)(4x-3)-(2-3x)(x-1)-2(3x-2)(x+1)
Bài 2*:Phân tích đa thức thành nhân tử
a) (a-b)(a+2b)-(b-a)(2a-b)-(a-b)(a+3b)
b) 5xy3-2xy2-15y2+6z
c) (x+y)(2x-y)+(2x-y)(3x-y)-(y-2x)
d) ab3c2-a2b2c2+ab2c3-a2bc
e) x2(y-z)+y2(z-x)+z2(x-y)
f) x2-6xy+9y2+4x-12y
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
Phân tích đa thức thành nhân tử
a/ 4x 2 - 8x + 4
b/ x 2 – y 2 + 3x + 3y
\(a,=4\left(x-1\right)^2\\ b,=\left(x-y\right)\left(x+y\right)+3\left(x+y\right)=\left(x+y\right)\left(x-y+3\right)\)
a, 4x2 - 8x + 4 = (2x)2 - 2.2x.2 + 2 = (2x - 2)2
b, x2 - y2 + 3x + 3y = (x2 - y2) + (3x + 3y) = (x- y). (x + y) + 3.(x + y) = (x+y).(x- y + 3)