CMR: n2+n +6 ko chia hết cho 5
n3-n chia hết cho 6
CMR:
1, Nếu a, b > 0 thì a+b \(\ge\) 2\(\sqrt{ab}\)
2, Nếu n là STN và n2 chia hết cho 5 thì n chia hết cho 5
3, Nếu n là STN và n2 chia hết cho 3 thì n chia hết cho 3
4, Nếu n là STN và n chia hết cho 6 thì n2 chia hết cho 6
Giúp mình với :((
1. Cho n thuộc N, CMR n2+n+1 ko chia hết cho 4 và ko chia hết cho 5.
Cho Q = 3 n ( n 2 + 2 ) - 2 ( n 3 - n 2 ) - 2 n 2 - 7 n . Chứng minh Q luôn chia hết cho 6 với mọi số nguyên n.
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
Tìm số nguyên n để:
a) n3 – 2 chia hết cho n – 2
b) n3 – 3n2 – 3n – 1 chia hết cho n2 + n + 1
c) 5n – 2n chia hết cho 63
giúp vs ạ...
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
CMR A=n3(n2-72)-36n chia hết cho 5040 với mọi số tự nhiên n
I.CHỨNG MINH :
1) n.(2n+7).(7n+7) chia hết cho 6 (n thuộc N)
2) n3-13n chia hết cho 6 (n thuộc Z)
3) m.n.(m2-n2) chia hết cho 3 (m,n thuộc Z)
LÀM NHANH GIÚP tớ nhá ^_^ Tớ tick
CMR:
a)abc chia hết cho 21 (=) a - 2b + 4c chia hết cho 21
b)Ngoại n thuộc N thì 60n + 45 chia hết cho 15 nhưng ko chia hết cho 30
c)Ko có số tự nhiên nào chia cho 15 thì dư 6 và chia 9 dư 1
d)(1005n + 2100b) chia hết cho 15 (a,b thuộc N)
e)A= n2 + n + 1 ko chia hét cho 2 và 5.Ngoại n thuộc N
f)Ngoại n thuộc N tích (n + 3) . (n + 6) chia hết cho 2
g)H = 2 + 22 + 23 +.....+ 260 chia hết cho 3,7,15
h)E = 1 + 3 + 32 + 33 + .......+ 31991 chia hết cho 13 và 41
chứng minh
a) n3 – n + 4 không chia hết cho 3 ;
b) n2 + 11n + 39 không chia hết cho 49 ;
c) n2 + 3n + 5 không chia hết cho 121.
a) Ta có n3 - n + 4
= n(n2 - 1) + 4
= (n - 1)n(n + 1) + 4
Vì (n - )n(n + 1) \(⋮3\)(tích 3 số nguyên liên tiếp)
mà 4 \(⋮̸\)3
=> n3 - n + 4 không chia hết cho 3
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)