cho A =1+2+22+23+...+299
a.chứng minh rằng A.chia hết cho 3 và 15
1. Chứng minh rằng
A = 2 + 22 + 23 + ... + 2100 chia hết cho 2,3 và 30
2. Chứng minh rằng
B = 3 + 32 + 33 + ... + 32022 chia hết cho 12 và 15
1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{97}\right)\)
\(=30\left(1+2^4+...+2^{96}\right)⋮30\)
2:
\(B=3+3^2+3^3+...+3^{2022}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)
\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)
\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)
Cho M=22 + 22 + 23 +.....+ 260.Chứng minh rằng M chia hết cho 3;7 và 15
\(M=2+2^2+...+2^{60}\)
\(=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\cdot\left(2+...+2^{59}\right)⋮3\)
\(M=2+2^2+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
A = 119 +118 +117 +... +11+1. Chứng minh rằng A chia hết cho 5
B = 2 + 22 + 23 +... + 260 . Chứng minh rằng B chia hết cho 7 và 15
C = 3 + 33 + 35 +... + 31991 . Chứng minh rằng C chia hết cho 13 và 41
mình cần gấp giúp mình với
giúp mình với mình chuẩn bị phải nộp bài rồi T~T
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
CHỨNG MINH RẰNG
A= 88+220 chia hết cho 17
B= 2+ 22+23+24+...+260 chia hết cho 3; cho 7; cho 15
C= 1+3+32+33+...+31991 chia hết cho 13; cho 41
D=3+32+33+34+...+32010 chia hết cho 4;cho 13
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
Chứng minh rằng
D = 2 + 22 + 23+................+ 22016 chia hết cho 3 , 7 , 15
chúng minh 2100-1
a.chia hết cho 3
b.chia hết cho 15
c.chia hết cho 31
Chứng minh rằng
1) ( 88 + 220 ) ⋮ 17
2) A = 2 + 22 + 23 + … + 2120 chia hết cho cả 3; 7 và 15.
\(1,8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
\(2,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\\ A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{119}\left(1+2\right)\\ A=3\left(2+2^3+...+2^{119}\right)⋮3\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\\ A=2\left(1+2+2^2\right)+...+2^{118}\left(1+2+2^2\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{118}\right)=7\left(2+...+2^{118}\right)⋮7\\ A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{117}+2^{118}+2^{119}+2^{120}\right)\\ A=2\left(1+2+2^2+2^3\right)+...+2^{117}\left(1+2+2^2+2^3\right)\\ A=\left(1+2+2^2+2^3\right)\left(2+...+2^{117}\right)=15\left(2+...+2^{117}\right)⋮15\)
Mọi người giải giúp em với ạ. Em đang cần gấp !!!
Cho A = 2+22+23+...+260
Chứng minh rằng A chia hết cho 15 .
Sửa đề : 2 + 22 + 23 + ... + 260
2 + 22 + 23 + ... + 260 = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + .... + ( 257 + 258 + 259 + 260 )
=20. 30 + 24 . 30 + ... + 256 . 30
= ( 20 + 24 + ... + 256) . 2 . 15 \(⋮\)15
Chứng minh A = 1 + 2 + 22 + 23 + 24 +…+ 219 + 220.chứng tỏ rằng A chia hết cho 3
A=\((1+2)+\left(2^2+2^3\right)+...+\left(2^{19}+2^{20}\right)\)
A=\(3.1+2^2\left(1+2\right)+...+2^{19}\left(1+2\right)\)
A=\(3.1+3.2^2+...+3.2^{19}\)
A=\(3\left(1+2^2+...+2^{19}\right)\)\(⋮3\)
Vậy A\(⋮3\)
A=(1+2)+(22+23)+...+(219+220)(1+2)+(22+23)+...+(219+220)
A=3.1+22(1+2)+...+219(1+2)3.1+22(1+2)+...+219(1+2)
A=3.1+3.22+...+3.2193.1+3.22+...+3.219
A=3(1+22+...+219)3(1+22+...+219)⋮3⋮3
NÊN A⋮3