phân tích đa thức
x^4+6x^3+11x^2+6x+1
x^4+x^3+x^2+x+1
6x^4+5x^3-38x^2+5x+6
x^4+5x^3-12x^2+5x+1
phân tích đa thức
a)x^4+6x^3+11x^2+6x+1
b)x^4+x^3+x^2+x+1
c)6x^4+5x^3-38x^2+5x+6
d)x^4+5x^3-12x^2+5x+1
dễ mà bạn xin 20 phút làm ra giấy nhé :))
a) \(\left(x^4+6x^3+9x^2\right)+2x^2+6x+1\)
\(\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(\left(x^2+3x+1\right)^2\)
b) \(x^4+x^3+x^2+x+1\)
câu b, chúa sẽ c/m x ko tồn tại , và nó là 1 đa thức bất khả Q . trong R
vì lớp 8 chưa học đến số phức
\(x^4+x^3=-x^2-x-1\)
\(x^4+x^3+\frac{1}{4}x^2=\left(\frac{1}{4}x^2-x^2\right)-x-1\)
\(\left(x^2+\frac{1}{2}x\right)^2=-\frac{3}{4}x^2-x-1\)
\(4\left(x^2+\frac{1}{2}x\right)^2=-3x^2-4x-4\)
\(\Delta`=\left(-2\right)^2-\left(-4\right).\left(-3\right)=4-12< 0\)
denta < 0 x vô nghiệm
vậy đa thức trên ko thể phân tích và nó là 1 đa thức bất khả Q
c) ,
\(\left(6x^4-12x^3\right)+\left(17x^3-34x^2\right)-\left(4x^2-8x\right)-\left(3x-6\right)\)
\(6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)\)
\(\left(x-2\right)\left(6x^3+17x^2-4x-3\right)\)
\(\left(x-2\right)\left\{\left(6x^3+18x^2\right)-\left(x^2+3x\right)-\left(x+3\right)\right\}\)
\(\left(x-2\right)\left\{6x^2\left(x+3\right)-x\left(x+3\right)-\left(x+3\right)\right\}\)
\(\left(x-2\right)\left(x+3\right)\left(6x^2-x-1\right)\)
\(\left(x-2\right)\left(x+3\right)\left\{\left(6x^2+\frac{6}{3}x\right)-\left(\frac{9}{3}x+\frac{9}{9}\right)\right\}\)
\(\left(x-2\right)\left(x+3\right)\left\{6x\left(x+\frac{1}{3}\right)-\frac{9}{3}\left(x+\frac{1}{3}\right)\right\}\)
\(\left(X-2\right)\left(X+3\right)\left(X+\frac{1}{3}\right)\left(6x-1\right)\)
d)
\(\left(x^4-x^3\right)+\left(6x^3-6x^2\right)-\left(6x^2-6x\right)-\left(x-1\right)\)
\(x^3\left(x-1\right)+6x^2\left(x-1\right)-6x\left(x-1\right)-\left(x-1\right)\)
\(\left(x-1\right)\left(x^3+6x^2-6x-1\right)\)
\(\left(x-1\right)\left\{\left(x^3-x^2\right)+\left(7x^2-7x\right)+\left(x-1\right)\right\}\)
\(\left(x-1\right)^2\left(x^2+7x+1\right)\)
\(\Delta=49-4=45\)
\(x1,2=\frac{-7+\sqrt{45}}{2},\frac{-7-\sqrt{45}}{2}\)
\(\left(x-1\right)^2\left(x-\frac{7+\sqrt{45}}{2}\right)\left(x-\frac{7-\sqrt{45}}{2}\right)\)
Giải pT sau : a.x(4x-1)^2(2x-1)=9 b.(x^2+5x+6)(x^2-11x+30)=180 c.6x^4-5x^3-38x^2-5x+6=0
c: =>(x+2)(x+3)(x-5)(x-6)=180
=>(x^2-3x-10)(x^2-3x-18)=180
=>(x^2-3x)^2-28(x^2-3x)=0
=>x(x-3)(x-7)(x+4)=0
=>\(x\in\left\{0;3;7;-4\right\}\)
c: =>(x-3)(x+2)(2x+1)(3x-1)=0
=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)
Phân tích đa thức thành nhân tử:
1.\(x^4+6x^3+11x^2+6x+1\)
2. \(6x^4+5x^3-38x^2+5x+6\\ \)
3. \(x^4-7x^3+14x^2-7x+1\)
\(1.x^4+6x^3+11x^2+6x+1\)
\(=x^4+6x^3+9x^2+2x^2+6x+1\)
\(=x^4+9x^2+1+6x^3+2x^2+6x\)
\(=\left(x^2\right)^2+\left(3x\right)^2+1^2+2.x^2.3x+2.x^2.1+2.3x.1\)
\(=\left(x^2+3x+1\right)^2\)
\(2,6x^4+5x^3-38x^2+5x+6\)
\(=6x^4+6x^3+2x^3-3x^3-36x^2+2x^2-3x^2-x^2-12x+18x-x+6\)
\(=\left(6x^4+2x^3\right)+\left(6x^3+2x^2\right)-\left(3x^3+x^2\right)-\left(36x^2+12x\right)+\left(18x+6\right)-\left(3x^2+x\right)\)
\(=2x^3\left(3x+1\right)+2x^2\left(3x+1\right)-x^2\left(3x+1\right)-12x\left(3x+1\right)+6\left(3x+1\right)-x\left(3x+1\right)\)
\(=\left(3x+1\right)\left(2x^3+2x^2-x^2-12x+6-x\right)\)
\(=\left(3x+1\right)\left[\left(2x^3-x^2\right)+\left(2x^2-x\right)-\left(12x-6\right)\right]\)
\(=\left(3x+1\right)\left[x^2\left(2x-1\right)+x\left(2x-1\right)-6\left(2x-1\right)\right]\)
\(=\left(3x+1\right)\left(2x-1\right)\left(x^2+x-6\right)\)
\(=\left(3x+1\right)\left(2x-1\right)\left(x^2+3x-2x-6\right)\)
\(=\left(3x+1\right)\left(2x-1\right)\left[\left(x^2+3x\right)-\left(2x+6\right)\right]\)
\(=\left(3x+1\right)\left(2x-1\right)\left[x\left(x+3\right)-2\left(x+3\right)\right]\)
\(=\left(3x+1\right)\left(2x-1\right)\left(x+3\right)\left(x-2\right)\)
1. \(x^4+6x^3+11x^2+6x+1\)
\(=\left(x^2\right)^2+2.x^2.3x+\left(3x\right)^2+2x^2+6x+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
3. \(x^4-7x^3+14x^2-7x+1\)
\(=x^2\left(x^2-7x+14-\dfrac{7}{x}+\dfrac{1}{x^2}\right)\)
\(=x^2\left[\left(x^2+\dfrac{1}{x^2}\right)-\left(7x+\dfrac{7}{x}\right)+14\right]\)
\(=x^2\left[\left(x+\dfrac{1}{x}\right)^2-7\left(x+\dfrac{1}{x}\right)+12\right]\)
\(=x^2\left[\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right).\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{1}{4}\right]\)
\(=x^2\left[\left(x+\dfrac{1}{x}-\dfrac{7}{2}\right)^2-\dfrac{1}{4}\right]\)
\(=\left(x^2+1-\dfrac{7}{2}x\right)^2-\left(\dfrac{1}{2}x\right)^2\)
\(=\left(x^2-3x+1\right)\left(x^2-4x+1\right)\)
Có thể phân tích thành HĐT tiếp hoặc không.
\(1.\text{ }x^4+6x^3+11x^2+6x+1\)
Dễ thấy đa thức trên sau khi phân tích thành nhân tử sẽ có dạng:
\(\left(x^2+ax+b\right)\left(x^2+cx+d\right)\\ =x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\\ =x^4+\left(c+a\right)x^3+\left(d+ac+b\right)x^2+\left(ad+bc\right)x+bd\)
Đồng nhất da thức tren với đa thức đã cho
\(\text{Ta được: }\left\{{}\begin{matrix}c+a=6\\d+ac+b=11\\ad+bc=6\\bd=1\Rightarrow b=1;d=1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}c+a=6\\ac=9\Rightarrow a=3;c=3\\a+c=6\end{matrix}\right.\)
Từ \(a=3;b=1;c=3;d=1\) suy ra:
\(x^4+6x^3+11x^2+6x+1\\ =\left(x^2+ax+b\right)\left(x^2+cx+d\right)\\ =\left(x^2+3x+1\right)\left(x^2+3x+1\right)\\ =\left(x^2+3x+1\right)^2\)\(2.\text{ }6x^4+5x^3-38x^2+5x+6\)
Dễ thấy đa thức trên sau khi phân tích thành nhân tử sẽ có dạng: \(\left(ax^2+bx+c\right)\left(dx^2+ex+f\right)\\ =adx^4+aex^3+afx^2+bdx^3+bex^2+bfx+cdx^2+cex+cf\\ =adx^4+\left(ae+bd\right)x^3+\left(af+be+cd\right)x^2+\left(bf+ce\right)x+cf\)
Đồng nhất da thức tren với đa thức đã cho
\(\text{Ta được: }\left\{{}\begin{matrix}ad=6\Rightarrow a=2;d=3\\ae+bd=5\\af+be+cd=-38\\bf+ce=5\\cf=6\Rightarrow c=2;f=3\end{matrix}\right.\\ \left\{{}\begin{matrix}2e+3b=5\\be=-50\Rightarrow e=-10;b=5\\3b+2e=5\end{matrix}\right.\)
Từ \(a=2;b=5;c=2;d=3;e=-10;f=3\) suy ra :
\(6x^4+5x^3-38x^2+5x+6\\ =\left(ax^2+bx+c\right)\left(dx^2+ex+f\right)\\ =\left(2x^2+5x+2\right)\left(3x^2-10x+3\right)\\ =\left(2x^2+4x+x+2\right)\left(3x^2-9x-x+3\right)\\ =\left[\left(2x^2+4x\right)+\left(x+2\right)\right]\left[\left(3x^2-9x\right)-\left(x-3\right)\right]\\ =\left[2x\left(x+2\right)+\left(x+2\right)\right]\left[3x\left(x-3\right)-\left(x-3\right)\right]\\ =\left(2x+1\right)\left(x+2\right)\left(3x-1\right)\left(x-3\right)\)
\(3.\text{ }x^4-7x^3+14x-7x+1\)
Dễ thấy đa thức trên sau khi phân tích thành nhân tử sẽ có dạng: \(\left(x^2+ax+b\right)\left(x^2+cx+d\right)\\ =x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\\ =x^4+\left(c+a\right)x^3+\left(d+ac+b\right)x^2+\left(ad+bc\right)x+bd\)
Đồng nhất da thức tren với đa thức đã cho
\(\text{Ta được: }\left\{{}\begin{matrix}c+a=-7\\d+ac+b=14\\ad+bc=-7\\bd=1\Rightarrow b=1;d=1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}c+a-7\\ac=12\Rightarrow a=-4;c=-3\\a+c=-7\end{matrix}\right.\)
Từ \(a=-4;b=1;c=-3;d=1\) suy ra :
\(x^4-7x^3+14x^2-7x+1\\ =\left(x^2+ax+b\right)\left(x^2+cx+d\right)\\ =\left(x^2-4x+1\right)\left(x^2-3x+1\right)\)
phân tích đa thức thành nhân tử
A=x^4+3x^3+6x^2-5x+3
B=x^4-6x^3+11x^2-6x+1
ai không giải được là ... tự biết -_-
b) http://olm.vn/hoi-dap/question/118763.html
Phân tích đa thức thành nhân tử
a) x^3+5x^2+3x-9
b)x^3+6x^2+11x+6
c)x^3+5x^2-3x-15
d)3x^3-4x^2+12x-16
e)2x^4-9x^2-5
Phân tích đa thức thành nhân tử:
1, x^3-x+y^3-4
2, 4x^2-y^2+4x+1
3, x^4+2x^3+x^2
4, x^2+5x-6
5, 7x-6x^2-2
6, 5x^2+5xy-x-y
7, 2x^2+3x-5
8,x^4-5x^2+4
9, x^3-5x^2+45-9x
10, x^4-2x^3-2x^2-2x-3
11, 81x^4+4
12,x^5+x+1
13, x^4+6x^3+7x^2-6x+1
14, x(x+4)(x+6)(x+10)+128
2: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
3: =x^2(x^2+2x+1)
=x^2(x+1)^2
4: =x^2+6x-x-6
=(x+6)(x-1)
5: =-6x^2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
6: =5x(x+y)-(x+y)
=(x+y)(5x-1)
7: =2x^2+5x-2x-5
=(2x+5)(x-1)
8: =(x^2-1)*(x^2-4)
=(x-1)(x+1)(x-2)(x+2)
9: =x^2(x-5)-9(x-5)
=(x-5)(x-3)(x+3)
Giải các phương trình sau:
a) \(x^4-6x^3+11x^2-6x+1=0\)
b) \(6x^4-5x^3-38x^2-5x+6=0\)
c) \(8x^4-34x^3+51x^2-34x+8=0\)
a, \(x^4-6x^3+11x^2-6x+1=0\)
\(\Rightarrow\left(x^2-3x+1\right)^2=0\)
\(\Rightarrow x^2-3x+1=0\)
\(\Rightarrow x=\frac{\pm\sqrt{5}+3}{2}\)
Chúc bạn học tốt
\(x^4-\left(6x^2-2x^2\right)+\left(9x^2-6x+1\right)=0\)
\(x^4-2x^2\left(3x-1\right)+\left(3x-1\right)^2=0\)
\(\left(x^2-3x+1\right)^2=0\)
tự làm
B) \(\left(6x^4-18x^3\right)+\left(13x^{^3}-39x^2\right)+\left(x-3x\right)-\left(2x-6\right)=0\)
\(6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(6x^3+13x^2-2\right)=0\)
\(\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)\)
\(\left(x-3\right)\left\{6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right\}\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-3x+2x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(3x\left(2x-1\right)+\left(2x-1\right)\right)\)
\(\left(x-3\right)\left(x+2\right)\left(2x-1\right)\left(3x+1\right)=0\)
câu C nghĩ đã
Giải các phương trình sau:
a) \(x^4-6x^3+11x^2-6x+1=0\)
b) \(6x^4-5x^3-38x^2-5x+6=0\)
c) \(8x^4-34x^3+51x^2-34x+8=0\)
a, \(x^4-6x^3+11x^2-6x+1=0\)
=> \(x^4-6x^3+9x^2+2x^2-6x+1=0\)
=> \(x^2+3x+1=0\)
=> \(\Delta\) =\(b^2-4c\)
=\(3^2.4=5\)
Nên \(\sqrt{\Delta}=5\)
x= \(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-3+\sqrt{5}}{2}\)
hoặc x= \(\dfrac{b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{5}}{2}\)
Đáp án câu a.
https://giaibaitapvenha.blogspot.com/2017/12/toan-lop-8-ai-so_27.html
Phân tích các đa thức bằng phương pháp đồng nhất hệ số
a, 4x^4+4x^3+5x^2+2x+1
b, x^4+6x^3+11x^2+6x+1
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(2x^2\right)^2+2.2x^2.x+x^2+4x^2+2x+1\)
\(=\left(2x^2+x\right)^2+2\left(2x^2+x\right)+1\)
\(=\left(2x^2+x+1\right)^2\)
\(x^4+6x^3+11x^2+6x+1\)
\(=\left(x^2\right)^2+2.x^2.3x+\left(3x\right)^2+2x^2+6x+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
Chúc bạn học tốt.