Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang

Phân tích đa thức thành nhân tử:

1.\(x^4+6x^3+11x^2+6x+1\)

2. \(6x^4+5x^3-38x^2+5x+6\\ \)

3. \(x^4-7x^3+14x^2-7x+1\)

lê thị hương giang
4 tháng 11 2017 lúc 18:34

\(1.x^4+6x^3+11x^2+6x+1\)

\(=x^4+6x^3+9x^2+2x^2+6x+1\)

\(=x^4+9x^2+1+6x^3+2x^2+6x\)

\(=\left(x^2\right)^2+\left(3x\right)^2+1^2+2.x^2.3x+2.x^2.1+2.3x.1\)

\(=\left(x^2+3x+1\right)^2\)

\(2,6x^4+5x^3-38x^2+5x+6\)

\(=6x^4+6x^3+2x^3-3x^3-36x^2+2x^2-3x^2-x^2-12x+18x-x+6\)

\(=\left(6x^4+2x^3\right)+\left(6x^3+2x^2\right)-\left(3x^3+x^2\right)-\left(36x^2+12x\right)+\left(18x+6\right)-\left(3x^2+x\right)\)

\(=2x^3\left(3x+1\right)+2x^2\left(3x+1\right)-x^2\left(3x+1\right)-12x\left(3x+1\right)+6\left(3x+1\right)-x\left(3x+1\right)\)

\(=\left(3x+1\right)\left(2x^3+2x^2-x^2-12x+6-x\right)\)

\(=\left(3x+1\right)\left[\left(2x^3-x^2\right)+\left(2x^2-x\right)-\left(12x-6\right)\right]\)

\(=\left(3x+1\right)\left[x^2\left(2x-1\right)+x\left(2x-1\right)-6\left(2x-1\right)\right]\)

\(=\left(3x+1\right)\left(2x-1\right)\left(x^2+x-6\right)\)

\(=\left(3x+1\right)\left(2x-1\right)\left(x^2+3x-2x-6\right)\)

\(=\left(3x+1\right)\left(2x-1\right)\left[\left(x^2+3x\right)-\left(2x+6\right)\right]\)

\(=\left(3x+1\right)\left(2x-1\right)\left[x\left(x+3\right)-2\left(x+3\right)\right]\)

\(=\left(3x+1\right)\left(2x-1\right)\left(x+3\right)\left(x-2\right)\)

Hoàng Thị Ngọc Anh
4 tháng 11 2017 lúc 18:50

1. \(x^4+6x^3+11x^2+6x+1\)

\(=\left(x^2\right)^2+2.x^2.3x+\left(3x\right)^2+2x^2+6x+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

3. \(x^4-7x^3+14x^2-7x+1\)

\(=x^2\left(x^2-7x+14-\dfrac{7}{x}+\dfrac{1}{x^2}\right)\)

\(=x^2\left[\left(x^2+\dfrac{1}{x^2}\right)-\left(7x+\dfrac{7}{x}\right)+14\right]\)

\(=x^2\left[\left(x+\dfrac{1}{x}\right)^2-7\left(x+\dfrac{1}{x}\right)+12\right]\)

\(=x^2\left[\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right).\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{1}{4}\right]\)

\(=x^2\left[\left(x+\dfrac{1}{x}-\dfrac{7}{2}\right)^2-\dfrac{1}{4}\right]\)

\(=\left(x^2+1-\dfrac{7}{2}x\right)^2-\left(\dfrac{1}{2}x\right)^2\)

\(=\left(x^2-3x+1\right)\left(x^2-4x+1\right)\)

Có thể phân tích thành HĐT tiếp hoặc không.

Trần Quốc Lộc
5 tháng 11 2017 lúc 12:51

\(1.\text{ }x^4+6x^3+11x^2+6x+1\)

Dễ thấy đa thức trên sau khi phân tích thành nhân tử sẽ có dạng:

\(\left(x^2+ax+b\right)\left(x^2+cx+d\right)\\ =x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\\ =x^4+\left(c+a\right)x^3+\left(d+ac+b\right)x^2+\left(ad+bc\right)x+bd\)

Đồng nhất da thức tren với đa thức đã cho

\(\text{Ta được: }\left\{{}\begin{matrix}c+a=6\\d+ac+b=11\\ad+bc=6\\bd=1\Rightarrow b=1;d=1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}c+a=6\\ac=9\Rightarrow a=3;c=3\\a+c=6\end{matrix}\right.\)

Từ \(a=3;b=1;c=3;d=1\) suy ra:

\(x^4+6x^3+11x^2+6x+1\\ =\left(x^2+ax+b\right)\left(x^2+cx+d\right)\\ =\left(x^2+3x+1\right)\left(x^2+3x+1\right)\\ =\left(x^2+3x+1\right)^2\)\(2.\text{ }6x^4+5x^3-38x^2+5x+6\)

Dễ thấy đa thức trên sau khi phân tích thành nhân tử sẽ có dạng: \(\left(ax^2+bx+c\right)\left(dx^2+ex+f\right)\\ =adx^4+aex^3+afx^2+bdx^3+bex^2+bfx+cdx^2+cex+cf\\ =adx^4+\left(ae+bd\right)x^3+\left(af+be+cd\right)x^2+\left(bf+ce\right)x+cf\)

Đồng nhất da thức tren với đa thức đã cho

\(\text{Ta được: }\left\{{}\begin{matrix}ad=6\Rightarrow a=2;d=3\\ae+bd=5\\af+be+cd=-38\\bf+ce=5\\cf=6\Rightarrow c=2;f=3\end{matrix}\right.\\ \left\{{}\begin{matrix}2e+3b=5\\be=-50\Rightarrow e=-10;b=5\\3b+2e=5\end{matrix}\right.\)

Từ \(a=2;b=5;c=2;d=3;e=-10;f=3\) suy ra :

\(6x^4+5x^3-38x^2+5x+6\\ =\left(ax^2+bx+c\right)\left(dx^2+ex+f\right)\\ =\left(2x^2+5x+2\right)\left(3x^2-10x+3\right)\\ =\left(2x^2+4x+x+2\right)\left(3x^2-9x-x+3\right)\\ =\left[\left(2x^2+4x\right)+\left(x+2\right)\right]\left[\left(3x^2-9x\right)-\left(x-3\right)\right]\\ =\left[2x\left(x+2\right)+\left(x+2\right)\right]\left[3x\left(x-3\right)-\left(x-3\right)\right]\\ =\left(2x+1\right)\left(x+2\right)\left(3x-1\right)\left(x-3\right)\)

\(3.\text{ }x^4-7x^3+14x-7x+1\)

Dễ thấy đa thức trên sau khi phân tích thành nhân tử sẽ có dạng: \(\left(x^2+ax+b\right)\left(x^2+cx+d\right)\\ =x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\\ =x^4+\left(c+a\right)x^3+\left(d+ac+b\right)x^2+\left(ad+bc\right)x+bd\)

Đồng nhất da thức tren với đa thức đã cho

\(\text{Ta được: }\left\{{}\begin{matrix}c+a=-7\\d+ac+b=14\\ad+bc=-7\\bd=1\Rightarrow b=1;d=1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}c+a-7\\ac=12\Rightarrow a=-4;c=-3\\a+c=-7\end{matrix}\right.\)

Từ \(a=-4;b=1;c=-3;d=1\) suy ra :

\(x^4-7x^3+14x^2-7x+1\\ =\left(x^2+ax+b\right)\left(x^2+cx+d\right)\\ =\left(x^2-4x+1\right)\left(x^2-3x+1\right)\)


Các câu hỏi tương tự
Trần Nghiên Hy
Xem chi tiết
Vũ Minh Hằng
Xem chi tiết
Tuyết Dương Thị
Xem chi tiết
Pham OKke Thanh
Xem chi tiết
Quốc Bảo Thái
Xem chi tiết
Hoàng Thu Thuỷ
Xem chi tiết
Phan Phú Trường
Xem chi tiết
bí ẩn
Xem chi tiết
Dương Đức T
Xem chi tiết