Chứng minh rằng:
a(b + c) + d(b+c) = (a + d) (b + c)
Cho (a + c)(b - d) = (a - c)(b + d)
Chứng minh rằng:a/b=c/d
\(\left(a+c\right)\left(b-d\right)=\left(a-c\right)\left(b+d\right)\)
\(\Leftrightarrow ab-ad+bc-cd=ab+ad-bc-cd\)
\(\Leftrightarrow-ad+bc=ad-bc\)
\(\Leftrightarrow2bc=2ad\)
\(\Leftrightarrow bc=ad\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\) (đpcm)
\(\left(a+b\right)\left(b-d\right)=\left(a-c\right)\left(b+d\right)\)
\(\Leftrightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}\) (Tính chất dãy tỉ số bằng nhau)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\) (đpcm)
Chứng minh rằng:a,b,c,d THUỘC Z
T= (a-b)(a-c)(a-d)(b-c)(b-d)(c-d)
cho \(\dfrac{a}{b}< \dfrac{c}{d}\) trong đó b,d dương. Chứng minh rằng:
a) a.d < b.c b)\(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Lời giải:
a)
$\frac{a}{b}< \frac{c}{d}\Leftrightarrow \frac{ad}{bd}< \frac{bc}{bd}$
$\Leftrightarrow \frac{ad-bc}{bd}< 0$
Vì $bd>0$ với mọi $b,d>0$ nên $ad-bc< 0\Leftrightarrow ad< bc$
b) Từ phần a suy ra $bc-ad>0$
$\frac{a+c}{b+d}-\frac{a}{b}=\frac{b(a+c)-a(b+d)}{b(b+d)}=\frac{bc-ad}{b(b+d)}>0$ do $bc-ad>0$ và $b(b+d)>0$ với mọi $b,d>0$)
$\Rightarrow \frac{a+c}{b+d}>\frac{a}{b}$
Lại có:
$\frac{a+c}{b+d}-\frac{c}{d}=\frac{d(a+c)-c(b+d)}{d(b+d)}=\frac{ad-bc}{d(b+d)}<0$ do $ad-bc<0$ và $d(b+d)>0$ với mọi $b,d>0$
$\Rightarrow \frac{a+c}{b+d}< \frac{c}{d}$
Ta có đpcm.
Cho a,b,c,d là số dương Chứng minh rằng:a/(b+c) + b/(c+d) + c/(d+a) + d/(a+b) =>2 theo phương pháp lớp 8
Cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right)\). Chứng minh rằng:
a) \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)
Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Chứng minh rằng:
a) (a-b) - (c - d ) + (b+ c) = c + d
b) Nếu (a + b - c) - (a - b + c) = a + (- b - a + c ) thì b = c
Lời giải:
a.
$(a-b)-(c-d)+(b+c)=a-b-c+d+b+c=(a+d)+(-b+b)+(-c+c)$
$=a+d+0+0=a+d$
b.
$(a+b-c)-(a-b+c)=a+(-b-a+c)$
$a+b-c-a+b-c=a-b-a+c$
$(a-a)+(b+b)-(c+c)=(a-a)-b+c$
$2b-2c=-b+c$
$2b+b=2c+c$
$3b=3c$
$b=c$ (đpcm)
Cho a/b<c/d va b>0,d>0
Chứng Minh Rằng:a/b<a+c/b+d<c/d
Chứng minh a/a-b=c/c-d biết a/b=c/dCho ab=cd chứng minh rằng:a) aa−b =cc−db) ab=a+cb+dc)a3a+b=c3c+bd) a.cb.c=a2+c2b2+d2e) a.bc.d=a2−b2c2−d2f) a.bc.d=(a−b)2(c−d)2
Cho 4 số nguyên dương: a < b < c < d. Chứng minh rằng:a+c/a+b+c+d < 1/2
a < b => 2a < a + b (1)
c < d => 2c < c + d (2)
Lấy (1) cộng (2) được:
2a + 2c < a + b + c + d
2(a + c) < a + b + c + d
=> \(\frac{a+c}{a+b+c+d}< \frac{1}{2}\) (đpcm)
Cho tỉ lệ thức: a/b=c/d
Chứng minh rằng:a-b/b=c-d/d
Có \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a-b}{b}=\frac{a}{b}-\frac{b}{b}=\frac{a}{b}-1\)( 1 )
\(\frac{c-d}{d}=\frac{c}{d}-\frac{d}{d}=\frac{c}{d}-1\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)( đpcm )
a-b/b=a/b-b/b=a/b-1=c/d-1(1)
c-d/d=c/d-d/d=c/d-1(2)
(1)(2)\(\Rightarrow\)đpcm