Tìm a,b,c biết \(\dfrac{5a-4b}{6}=\dfrac{6b-5c}{4}=\dfrac{4c-6a}{5}\) và a + b + c =45
Tìm ba số a,b,c biết 5a-4b/6=6b-5c/4=4c-6a/5 và a+b+c=45
1) Tìm x ; y; z biết
3 .(x - 1) = 2 .(y - 2) ; 4 .(y - 2) = 3 .(z - 3) và 2x + 3y - z = 50
2) Tìm a;b;c biết:
a) \(\dfrac{a-1}{2}=\dfrac{b+3}{4}=\dfrac{c-5}{6}\) và 5a - 3b - 4c = 46
b) 3a = 2b ; 4b = 5c và -a - b + c = -52
bài 2 : a) \(\dfrac{a-1}{2}=\dfrac{b+3}{4}=\dfrac{c-5}{6}\)
áp dụng dảy tỉ số bằng nhau
ta có : \(\dfrac{5\left(a-1\right)-3\left(b+3\right)-4\left(c-5\right)}{5.2-3.4-4.6}\)
\(=\dfrac{5a-5-3b-9-4c+20}{10-12-24}=\dfrac{\left(5a-3b-4c\right)-5-9+20}{-26}\)
\(=\dfrac{46+6}{-26}=\dfrac{52}{-26}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a-1}{2}=-2\\\dfrac{b+3}{4}=-2\\\dfrac{c-5}{6}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a-1=-4\\b+3=-8\\c-5=-12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-11\\c=-7\end{matrix}\right.\)
vậy \(a=-3;b=-11;c=-7\)
b) ta có : \(3a=2b\Leftrightarrow6a=4b=5c\Leftrightarrow\dfrac{6a}{2}=\dfrac{4b}{2}=\dfrac{5c}{2}\)
áp dụng dảy tỉ số bằng nhau
ta có \(\dfrac{-60a-60b+60c}{-10.2-15.2+12.2}=\dfrac{60\left(-a-b+c\right)}{-20-30+24}\)
\(=\dfrac{60\left(-52\right)}{-26}=\dfrac{-3120}{-26}=120\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{6a}{2}=120\\\dfrac{4b}{2}=120\\\dfrac{5c}{2}=120\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6a=240\\4b=240\\5c=240\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=40\\b=60\\c=48\end{matrix}\right.\)
vậy \(a=40;b=60;c=48\)
Cho tỉ lệ thức: \(\dfrac{3a+4b}{5a-6b}=\dfrac{3c+4d}{5c-6d}\)
CMR: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\dfrac{3a+4b}{5a-6b}=\dfrac{3c+4d}{5c-6d}\)
=> \(\dfrac{3a+4b}{3c+4d}=\dfrac{5a-6b}{5c-6d}\)
ta có
\(\dfrac{3a+4b}{3c+4d}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a}{b}=\dfrac{c}{d}\)(đpcm)
Ta có:
\(\dfrac{3a+4b}{5a-6b}=\dfrac{3c+4d}{5c-6d}\)
\(\Leftrightarrow\left(3a+4b\right)\left(5c-6d\right)=\left(3c+4d\right)\left(5a-6b\right)\)
\(\Rightarrow15ac-18ad+20bc-24bd=15ac-18bc+20ad-24bd\)
\(\Rightarrow15ac-15ac-18ad-20ad=-24bd+24bd-18bc-20bc\)
\(\Rightarrow-38ad=-38bc\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
Cho \(\frac{5a-4b}{6}=\frac{6a-4c}{5}=\frac{6b-5c}{4}\)
CMR: \(\frac{c}{6}=\frac{b}{5}=\frac{a}{4}\)
\(\frac{\left(5a-4b\right)6}{36}=\frac{\left(6a-4c\right)5}{25}=\frac{\left(6b-5c\right)4}{16}=\frac{\left(5a-4b\right)6-\left(6a-4c\right)5+\left(6b-5c\right)4}{36-25+16}=\frac{0}{27}\)
\(\Rightarrow5a=4b\Leftrightarrow\frac{a}{4}=\frac{b}{5}\)
\(\Rightarrow6a=4c\Leftrightarrow\frac{a}{4}=\frac{c}{6}\)
\(\Rightarrow\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\)
ờ, vậy chúc hai n` giải toán zui zẻ
Cho a+b+c+d ≠ 0 và \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính giá trị biểu thức:
P = \(\dfrac{2a+5b}{3c+4d}-\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
Cho a+b+c+d ≠ 0 thỏa mãn:
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính P = \(\dfrac{2a+5b}{3c+4d}+\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
1) So sánh :
a) \(3^{2^3}\) và (32)3 b) (-8)9 và (-32)5 c) 221 và 314
2) Cho \(\dfrac{a}{b}=\dfrac{c}{d}.\) Chứng minh rằng :
a)\(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\) b) \(\dfrac{ab}{cd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Mk săpp thi rồi nên hơi nhiều bài mong mn giúp mk !!!
\(1,\\ a,3^{2^3}=3^8>3^6=\left(3^2\right)^3\\ b,\left(-8\right)^9=\left(-2\right)^{27}< \left(-2\right)^{25}=\left(-32\right)^5\\ c,2^{21}=8^7< 9^7=3^{14}\\ 2,\)
\(a,\) Áp dụng tcdtsbn:
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(b,\) Sửa: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow a=bk;c=dk\)
\(\Leftrightarrow\dfrac{ab}{cd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2};\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2}{d^2}\\ \LeftrightarrowĐpcm\)
Tìm a, b, c, biết
a) \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}\) và \(a-2b+3c=14\)
b) \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\) và \(a+b+c=49\)
b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)
Vậy (a,b,c) = (18,16,15)
Cho \(\dfrac{a-1}{2}=\dfrac{b+3}{4}=\dfrac{c-5}{6}\) và 5a - 3b - 4c = 46 . Xác định a,b,c
Ta có : a - 1 / 2 = b + 3 / 4 = c - 5 / 6
<=> 5a - 5 / 10 = 3b + 9 / 12 = 4c - 20 / 24
Áp dụng t/c dãy tỉ số bằng nhau , ta có :
5a - 5 / 10 = 3b + 9 / 12 = 4c - 20 / 24 = ( 5a - 3b - 4c ) - 5 - 9 + 20 / 10 - 12 - 24 = 52/-26 = -2
=> a - 1 / 2 = -2 <=> a = -3
=> b + 3 / 4 = -2 <=> b = -5
=> c - 5 / 6 = -2 <=> c = -7
Vậy a = -3 ; b = -5 ; c = -7