Tìm x, biết:
1/\(\dfrac{3^{x+5}}{9^3}=27^4\)
tìm x biết
\(\dfrac{7}{9}:\left(2+\dfrac{3}{4}.x\right)+\dfrac{5}{9}=\dfrac{23}{27}\)
|x|\(-\dfrac{3}{4}=\dfrac{5}{3}\)
\(\left|2.x-\dfrac{1}{3}\right|+\dfrac{5}{6}=1\)
giúp mk vs nhanh lên mình đang bận
b) Ta có: \(\left|x\right|-\dfrac{3}{4}=\dfrac{5}{3}\)
\(\Leftrightarrow\left|x\right|=\dfrac{5}{3}+\dfrac{3}{4}=\dfrac{20}{12}+\dfrac{9}{12}=\dfrac{29}{12}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{29}{12}\\x=-\dfrac{29}{12}\end{matrix}\right.\)
c) Ta có: \(\left|2x-\dfrac{1}{3}\right|+\dfrac{5}{6}=1\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|=\dfrac{1}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{1}{3}=\dfrac{1}{6}\\2x-\dfrac{1}{3}=\dfrac{-1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{6}+\dfrac{1}{3}=\dfrac{1}{2}\\2x=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=\dfrac{1}{12}\end{matrix}\right.\)
Bài 4. Tìm x biết:
a. \(\dfrac{x}{5}=\dfrac{2}{5},\dfrac{3}{8}=\dfrac{6}{x},\dfrac{1}{9}=\dfrac{x}{27}\)
b. \(\dfrac{4}{x}=\dfrac{8}{6},\dfrac{3}{x-5}=\dfrac{-4}{x+2},\dfrac{x}{-2}=\dfrac{-8}{x}\)
a,2/5 = 2/5 ; 3/8=6/16 ; 1/9=3/27
b, 4/3=8/6 ; -1=-1 ; -4/-2=-8/4
tick cho mik nhé
a) x= 2, x= 8.(6 : 3) = 16, x= 1. (27 : 9)= 3
b) x= 6 : (8 : 4) = 3, x= -1, x= -2 . -8 = x.x => 16 = x2 => 42 = x2 => x=4
Tick cho mình đi
Tìm x biết: a) x + \(\dfrac{2}{3}=\dfrac{4}{27}\) b) \(\dfrac{3}{4}x-\dfrac{7}{3}=\dfrac{1}{4}x+\dfrac{1}{6}\)
c) \(\dfrac{13}{10}x-\dfrac{5}{2}=\dfrac{7}{2}\) d) (3\(x\) + 2) \(\left(\dfrac{-2}{5}x-7\right)=0\)
a: x=4/27-2/3=4/27-18/27=-14/27
b: =>3/4x-1/4x=1/6+7/3
=>1/2x=1/6+14/6=5/2
hay x=5
c: =>13/10x=7/2+5/2=6
=>x=13/10:6=13/60
d: (3x+2)(-2/5x-7)=0
=>3x+2=0 hoặc 2/5x+7=0
=>x=-2/3 hoặc x=-35/2
a: x=4/27-2/3=4/27-18/27=-14/27
b: =>3/4x-1/4x=1/6+7/3
=>1/2x=1/6+14/6=5/2
hay x=5
c: =>13/10x=7/2+5/2=6
=>x=13/10:6=13/60
d: (3x+2)(-2/5x-7)=0
=>3x+2=0 hoặc 2/5x+7=0
=>x=-2/3 hoặc x=-35/2
\(\left(3-x\right)^3=-\dfrac{27}{64};\left(x-5\right)^3=\dfrac{1}{-27};\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8};\left(2x-1\right)^2=\dfrac{1}{4};\left(2-3x\right)^2=\dfrac{9}{4};\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\)
\(\left(3-x\right)^3=-\dfrac{27}{64}\)
\(\left(3-x\right)^3=\left(\dfrac{-3}{4}\right)^3\)
\(=>3-x=\dfrac{-3}{4}\)
\(x=3-\dfrac{-3}{4}=\dfrac{12}{4}+\dfrac{3}{4}\)
\(x=\dfrac{15}{4}\)
________
\(\left(x-5\right)^3=\dfrac{1}{-27}\)
\(\left(x-5\right)^3=\left(\dfrac{-1}{3}\right)^3\)
\(=>x-5=\dfrac{-1}{3}\)
\(x=\dfrac{-1}{3}+5=\dfrac{-1}{3}+\dfrac{15}{3}\)
\(x=\dfrac{14}{3}\)
_____________
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8}\)
\(\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{3}{2}\right)^3\)
\(=>x-\dfrac{1}{2}=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}+\dfrac{1}{2}\)
\(x=2\)
________
\(\left(2x-1\right)^2=\dfrac{1}{4}\)
\(\left(2x-1\right)^2=\left(\dfrac{1}{2}\right)^2\) hoặc \(\left(2x-1\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(=>2x-1=\dfrac{1}{2}\) \(2x-1=\dfrac{-1}{2}\)
\(2x=\dfrac{1}{2}+1=\dfrac{1}{2}+\dfrac{2}{2}\) \(2x=\dfrac{-1}{2}+1=\dfrac{-1}{2}+\dfrac{2}{2}\)
\(2x=\dfrac{3}{2}\) \(2x=\dfrac{1}{2}\)
\(x=\dfrac{3}{2}:2=\dfrac{3}{2}.\dfrac{1}{2}\) \(x=\dfrac{1}{2}:2=\dfrac{1}{2}.\dfrac{1}{2}\)
\(x=\dfrac{3}{4}\) \(x=\dfrac{1}{4}\)
____________
\(\left(2-3x\right)^2=\dfrac{9}{4}\)
\(\left(2-3x\right)^2=\left(\dfrac{3}{2}\right)^2\) hoặc \(\left(2-3x\right)^2=\left(\dfrac{-3}{2}\right)^2\)
\(=>2-3x=\dfrac{3}{2}\) \(2-3x=\dfrac{-3}{2}\)
\(3x=2-\dfrac{3}{2}=\dfrac{4}{2}-\dfrac{3}{2}\) \(3x=2-\dfrac{-3}{2}=\dfrac{4}{2}+\dfrac{3}{2}\)
\(3x=\dfrac{1}{2}\) \(3x=\dfrac{7}{2}\)
\(x=\dfrac{1}{2}.\dfrac{1}{3}\) \(x=\dfrac{7}{2}.\dfrac{1}{3}\)
\(x=\dfrac{1}{6}\) \(x=\dfrac{7}{6}\)
______________
\(\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) -> Kiểm tra đề câu này
(3-x)3=(-\(\dfrac{3}{4}\))3
3-x=-\(\dfrac{3}{4}\)
x=3-(-\(\dfrac{3}{4}\))
x=\(\dfrac{15}{4}\)
a) \(\sqrt{4x^2-9}=2\sqrt{x+3}\)
b) \(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c) \(\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27\sqrt{\dfrac{x-1}{81}}=4\)
d)\(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)
\(ĐK:x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)
\(\Leftrightarrow4x^2-9=4x+12\)
\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)
\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(ĐK:x\ge5\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)
ĐK:x>=1
\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)
\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)
\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(ĐK:x\ge3\)
\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)
\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}=0\) (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)
Tính giá trị biểu thức:
a) \(P=\left(x^3+12x-9\right)^{2005}\), biết \(x=\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\);
b) \(Q=x^3+ax+b\), biết \(x=\sqrt[3]{-\dfrac{b}{2}+\sqrt{\dfrac{b^2}{4}+\dfrac{a^3}{27}}}+\sqrt[3]{-\dfrac{b}{2}-\sqrt{\dfrac{b^2}{4}+\dfrac{a^3}{27}}}\)
a) Để tính giá trị của biểu thức P=(x^3+12x−9)^{2005}=(√3+12√−9)^{2005} với x=3√4(√5+1)−3√4(√5−1). Đầu tiên, ta thay x bằng giá trị đã cho vào biểu thức P: P=(3√4(√5+1)−3√4(√5−1))^3+12(3√4(√5+1)−3√4(√5−1))−9)^{2005} Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: P=(4(5+1)^{1/2}−4(5−1)^{1/2})^3+12(4(5+1)^{1/2}−4(5−1)^{1/2})−9)^{2005} =(4√6−4√4)^3+12(4√6−4√4)−9)^{2005} =(4√6−8)^3+12(4√6−8)−9)^{2005} =(64√6−192+96√6−96−9)^{2005} =(160√6−297)^{2005} ≈ 1.332 × 10^3975
b) Để tính giá trị của biểu thức Q=x^3+ax+b=√3+√a+√b^2+√a^3+√3+√a−√b^2+√a^3 với x=3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27). Tương tự như trên, ta thay x bằng giá trị đã cho vào biểu thức Q: Q=(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))^3+a(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))+b Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: Q=(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))^3+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b ≈ −b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b
Tìm \(x\) biết:
\(a.x=\dfrac{1}{5}+\dfrac{-3}{7}\) \(b.\dfrac{3}{5}-\dfrac{4}{7}\div x=\dfrac{-9}{10}\) \(c.x-\left(\dfrac{-3}{4}\right)=\dfrac{-2}{3}-\dfrac{1}{2}\) \(d.\dfrac{-5}{9}-x=\dfrac{1}{3}+\dfrac{7}{18}\)
\(a,x=\dfrac{1}{5}+\dfrac{-3}{7}\)
\(x=\dfrac{7}{35}+\dfrac{-15}{35}\)
\(x=-\dfrac{8}{35}\)
\(b,\dfrac{3}{5}-\dfrac{4}{7}:x=\dfrac{-9}{10}\)
\(\dfrac{4}{7}:x=\dfrac{3}{5}-\dfrac{-9}{10}\)
\(\dfrac{4}{7}:x=\dfrac{3}{2}\)
\(x=\dfrac{4}{7}:\dfrac{3}{2}\)
\(x=\dfrac{4}{7}\times\dfrac{2}{3}\)
\(x=\dfrac{8}{21}\)
\(c,x-\left(\dfrac{-3}{4}\right)=\dfrac{-2}{3}-\dfrac{1}{2}\)
\(x+\dfrac{3}{4}=\dfrac{-4}{6}-\dfrac{3}{6}\)
\(x+\dfrac{3}{4}=-\dfrac{7}{6}\)
\(x=-\dfrac{7}{6}-\dfrac{3}{4}\)
\(x=-\dfrac{23}{12}\)
\(d,\dfrac{-5}{9}-x=\dfrac{1}{3}+\dfrac{7}{18}\)
\(\dfrac{-5}{9}-x=\dfrac{6}{18}+\dfrac{7}{18}\)
\(\dfrac{-5}{9}-x=\dfrac{13}{18}\)
\(x=\dfrac{-5}{9}-\dfrac{13}{18}\)
\(x=\dfrac{-10}{18}-\dfrac{13}{18}\)
\(x=-\dfrac{23}{18}\)
Tìm x, biết:
a) \(\dfrac{2}{5}\) + \(\dfrac{3}{4}\): x = \(\dfrac{-1}{2}\)
b) \(\dfrac{5}{7}\) - \(\dfrac{2}{3}\) . x = \(\dfrac{4}{5}\)
c) \(\dfrac{1}{2}\) x + \(\dfrac{2}{3}\) x = \(\dfrac{-2}{3}\)
d) \(\dfrac{4}{7}\)x - x= \(\dfrac{-9}{14}\)
a, 2/5 + 3/4 : x = -1/2
3/4 : x = -1/2 - 2/5
3/4 : x = -9/10
x = 3/4 : -9/10
x = -5/6
b, 5/7 - 2/3 . x = 4/5
2/3 . x = 4/5 + 5/7
2/3 . x = 53/35
x = 53/35 : 2/3
x = 159/70
c và d mình làm dược nhưng ko ghi được cái suy ra
Tìm x, biết:
a) \(\dfrac{2}{3}\)x - \(\dfrac{1}{2}\)x = \(\left(-\dfrac{7}{12}\right)\) . \(1\dfrac{2}{5}\)
b) \(\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2\) = \(\dfrac{9}{4}\)
c) (1,25 - \(\dfrac{4}{5}\)x)3 = -125
a) \(\dfrac{2}{3}x-\dfrac{1}{2}x=\left(-\dfrac{7}{12}\right)\cdot1\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{6}x=\left(-\dfrac{7}{12}\right)\cdot\dfrac{7}{5}\)
\(\Rightarrow\dfrac{1}{6}x=-\dfrac{49}{60}\)
\(\Rightarrow x=-\dfrac{49}{60}:\dfrac{1}{6}\)
\(\Rightarrow x=-\dfrac{49}{10}\)
b) \(\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\dfrac{9}{4}\)
\(\Rightarrow\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\left(\pm\dfrac{3}{2}\right)^2\)
+) \(\dfrac{1}{5}-\dfrac{3}{2}x=\dfrac{3}{2}\)
\(\Rightarrow\dfrac{3}{2}x=\dfrac{1}{5}-\dfrac{3}{2}\)
\(\Rightarrow\dfrac{3}{2}x=-\dfrac{13}{10}\)
\(\Rightarrow x=-\dfrac{13}{10}:\dfrac{3}{2}\)
\(\Rightarrow x=-\dfrac{13}{15}\)
+) \(\left(1,25-\dfrac{4}{5}x\right)^3=-125\)
\(\Rightarrow\left(\dfrac{5}{4}-\dfrac{4}{5}x\right)^3=\left(-5\right)^3\)
\(\Rightarrow\dfrac{5}{4}-\dfrac{4}{5}x=-5\)
\(\Rightarrow\dfrac{4}{5}x=\dfrac{5}{4}+5\)
\(\Rightarrow\dfrac{4}{5}x=\dfrac{25}{4}\)
\(\Rightarrow x=\dfrac{25}{4}:\dfrac{4}{5}\)
\(\Rightarrow x=\dfrac{125}{16}\)
a, \(\dfrac{2}{3}\)\(x\) - \(\dfrac{1}{2}\)\(x\) = (- \(\dfrac{7}{12}\)). 1\(\dfrac{2}{5}\)
\(x\).(\(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)) = (- \(\dfrac{7}{12}\)) . \(\dfrac{7}{5}\)
\(x\). \(\dfrac{1}{6}\) = - \(\dfrac{49}{60}\)
\(x\) = - \(\dfrac{49}{60}\).6
\(x\) = -\(\dfrac{49}{10}\)
a,2.(\(\dfrac{1}{4}\)+x)\(^3\)=(\(-\dfrac{27}{4}\))
b,(x+\(\dfrac{1}{2}\))\(^3\):3=\(\dfrac{-1}{81}\)
c,(\(\dfrac{2}{3}\)-x)\(^2\)=1:\(\dfrac{4}{9}\)
d,(2x-\(\dfrac{1}{5}\))\(^2\)+\(\dfrac{16}{25}\)=1
e,(\(\dfrac{2}{5}\)-3x)\(^2\)-\(\dfrac{1}{5}\)=\(\dfrac{4}{25}\)