Tìm x, biết: \(\sqrt{25-20x+4x^2}+2x=5\)
Tìm x, biết:
a) \(\sqrt{\left(x-3\right)^2}=3-x\)
b) \(\sqrt{25-20x+4x^2}+2x=5\)
a,\(Đkxđ:x\ge3\)
Ta có:
\(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow|x-3|=3-x\)
\(\Leftrightarrow x-3=\left[{}\begin{matrix}x-3\\3-x\end{matrix}\right.\)
\(TH1:x-3=x-3\Leftrightarrow0x=0\)
\(\Rightarrow\)\(x\in R\) và \(x\ge3\)
\(TH2:x-3=3-x\Leftrightarrow2x=6\Leftrightarrow x=3\)( ko thỏa mãn điều kiện)
vậy \(\left\{x\in R/x\ge3\right\}\)
b, \(Đkxđ:x\le\dfrac{5}{2}\)
Ta có:
\(\sqrt{25-20x+4x^2}+2x=5\)
\(\Leftrightarrow\sqrt{\left(5-2x\right)^2}+2x=5\)
\(\Leftrightarrow\left|5-2x\right|=5-2x\)
\(\Leftrightarrow\left[{}\begin{matrix}5-2x=5-2x\\5-2x=2x-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}0x=0\\4x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in R\\x=\dfrac{5}{2}\left(tmđk\right)\end{matrix}\right.\)
Vậy \(\left\{x\in R/x\le\dfrac{5}{2}\right\}\)
\(\sqrt{4x^2}-20x+25+2x=5\)
\(\sqrt{1-2x}+36x^2=5\)
\(\sqrt{4x^2-20x+25x+2x}=5\)
\(\sqrt{x-2}\sqrt{x-1}=\sqrt{x-1-1}\)
dài v nhg thui cố làm v
a)\(\sqrt{4x^2}-20x+25+2x=5\)
=> \(2x-18x+20=0\)
=> \(-16x+20=0\)
=> \(-4x+5=0\)
=> \(-4x=-5\)
=> \(x=\dfrac{5}{4}\)
vậy........................................................
d) \(\sqrt{x-2}\cdot\sqrt{x-1}=\sqrt{x-1-1}\)
cau này đề sai
ok baby
\(\sqrt{x+2\sqrt{x-1}}=2\)
\(\sqrt{4x^2-20x+25}+2x=5\)
\(\sqrt{2x^2-3}=\sqrt{4x-3}\)
\(\sqrt{x^2-x-6}=\sqrt{x-3}\)
\(\sqrt{x^2-x}=\sqrt{3-x}\)
a.
\(\sqrt{x+2\sqrt{x-1}}=2\)
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)
\(\Leftrightarrow\sqrt{x-1}+1=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\)
b.
\(\sqrt{4x^2-20x+25}=5-2x\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}=5-2x\)
\(\Leftrightarrow\left|5-2x\right|=5-2x\)
\(\Leftrightarrow5-2x\ge0\)
\(\Leftrightarrow x\le\dfrac{5}{2}\)
c.
ĐKXĐ: \(x\ge3\)
\(\sqrt{x^2-x-6}=\sqrt{x-3}\)
\(\Rightarrow x^2-x-6=x-3\)
\(\Leftrightarrow x^2-2x-3=0\Rightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=3\end{matrix}\right.\)
d.
ĐKXĐ: \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)
\(\sqrt{x^2-x}=\sqrt{3-x}\)
\(\Rightarrow x^2-x=3-x\)
\(\Leftrightarrow x^2=3\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\) (thỏa mãn)
a)\(\sqrt{X^2-3X+2}=3-X\)
b)\(\sqrt{4x^2-20x+25}+2x=5\)
c)\(\sqrt{\left(3-2x\right)^2}=4\)
a
ĐK:
\(3-x\ge0\\ \Leftrightarrow x\le3\)
\(\sqrt{x^2-3x+2}=3-x\\ \Leftrightarrow x^2-3x+2=\left(3-x\right)^2=9-6x+x^2\\ \Leftrightarrow x^2-3x+2-9+6x-x^2=0\\ \Leftrightarrow3x=7\\ \Leftrightarrow x=\dfrac{7}{3}\left(nhận\right)\)
Thử lại: \(\sqrt{\left(\dfrac{7}{3}\right)^2-3.\dfrac{7}{3}+2}=\dfrac{2}{3}>0\)
Vậy phương trình có nghiệm duy nhất \(x=\dfrac{7}{3}\)
b
\(\sqrt{4x^2-20x+25}=\sqrt{\left(2x\right)^2-2.2x.5+5^2}=\sqrt{\left(2x-5\right)^2}=\left|2x-5\right|\)
Phương trình trở thành:
\(\left|2x-5\right|+2x=5\) (1)
Với \(x< \dfrac{5}{2}\) thì (1) \(\Leftrightarrow5-2x+2x=5\Leftrightarrow5=5\)
=> Với \(x< \dfrac{5}{2}\) thì phương trình có nghiệm với mọi x \(< \dfrac{5}{2}\) (I)
Với \(x\ge\dfrac{5}{2}\) thì (1)
\(\Leftrightarrow2x-5+2x=5\\ \Leftrightarrow2x-5+2x-5=0\\ \Leftrightarrow4x=10\\ \Leftrightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\left(nhận\right)\left(II\right)\)
Từ (I), (II) kết luận phương trình có nghiệm với mọi \(x\le\dfrac{5}{2}\)
c
\(\Leftrightarrow\left|3-2x\right|=4\) (1)
Nếu \(x\le\dfrac{3}{2}\) thì (1)
\(\Leftrightarrow3-2x=4\\ \Leftrightarrow2x=-1\\ \Leftrightarrow x=-\dfrac{1}{2}\left(nhận\right)\)
Nếu \(x>\dfrac{3}{2}\) thì (1)
\(\Leftrightarrow2x-3=4\\ \Leftrightarrow2x=7\\ \Leftrightarrow x=\dfrac{7}{2}\left(nhận\right)\)
Vậy phương trình có 2 nghiệm \(S=\left\{-\dfrac{1}{2};\dfrac{7}{2}\right\}\)
a: =>x^2-3x+2=x^2-6x+9 và x<=3
=>3x=7 và x<=3
=>x=7/3(loại)
b: =>|2x-5|=5-2x
=>2x-5<=0
=>x<=5/2
c: =>|2x-3|=4
=>2x-3=4 hoặc 2x-3=-4
=>x=-1/2 hoặc x=7/2
5. giải phương trình
a.\(\sqrt{\left(x-3\right)^2}=3-x\)
b.\(\sqrt{4x^2-20x+25}+2x=5\)
c.\(\sqrt{1-12x+36x^2}=5\)
a: Ta có: \(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow x-3\le0\)
hay \(x\le3\)
b: Ta có: \(\sqrt{4x^2-20x+25}+2x=5\)
\(\Leftrightarrow\left|2x-5\right|=5-2x\)
\(\Leftrightarrow2x-5\le0\)
hay \(x\le\dfrac{5}{2}\)
Tìm x, biết
Căn bậc hau của (25-20x+4x2) +2x =5
giải hộ mik cái pt
\(\sqrt{4x^2-20x+25}+2x=5\)
\(\sqrt{4x^2-20x+25}+2x=5\\ < =>\sqrt{\left(2x-5\right)^2}+2x=5\\ < =>\left|2x-5\right|+2x=5 \\ < =>\left[{}\begin{matrix}2x-5+2x=5\left(x\ge\dfrac{5}{2}\right)\\2x-5+2x=-5\left(x< \dfrac{5}{3}\right)\end{matrix}\right.< =>\left[{}\begin{matrix}4x=10< =>x=\dfrac{5}{2}\left(tmdk\right)\\4x=0< =>x=0\left(ktmdk\right)\end{matrix}\right.\\ =>x=\dfrac{5}{2}\)
\(\sqrt{\left(5-2x\right)^2}=5-2x\)
\(\Leftrightarrow\left|5-2x\right|=5-2x\)
\(\Leftrightarrow5-2x\ge0\) (tính chất: \(\left|A\right|=A\Leftrightarrow A\ge0\))
\(\Leftrightarrow x\le\dfrac{5}{2}\)
Vậy nghiệm của pt là \(x\le\dfrac{5}{2}\)
\(\sqrt{4x^2-20x+25}+2x=5\left(đk:x\le\dfrac{5}{2}\right)\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}=5-2x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{5}{2}\\2x-5=2x-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\in R\\x\le\dfrac{5}{2}\end{matrix}\right.\)
Giải phương trình:
a) \(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
b) \(2x^2-8x-3\sqrt{x^2-4x-5}=12\)
\(\frac{10}{5-2x}\).\(\sqrt{\frac{x2\left(25-20x+4x^2\right)}{25}}\) (Với x > 2,5)