a.
\(\sqrt{x+2\sqrt{x-1}}=2\)
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)
\(\Leftrightarrow\sqrt{x-1}+1=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\)
b.
\(\sqrt{4x^2-20x+25}=5-2x\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}=5-2x\)
\(\Leftrightarrow\left|5-2x\right|=5-2x\)
\(\Leftrightarrow5-2x\ge0\)
\(\Leftrightarrow x\le\dfrac{5}{2}\)
c.
ĐKXĐ: \(x\ge3\)
\(\sqrt{x^2-x-6}=\sqrt{x-3}\)
\(\Rightarrow x^2-x-6=x-3\)
\(\Leftrightarrow x^2-2x-3=0\Rightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=3\end{matrix}\right.\)
d.
ĐKXĐ: \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)
\(\sqrt{x^2-x}=\sqrt{3-x}\)
\(\Rightarrow x^2-x=3-x\)
\(\Leftrightarrow x^2=3\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\) (thỏa mãn)