Gọi M là trung điểm cạnh BC của tam giác ABC và H là trung điểm của AM. BH cắt AC tại E. Chứng minh \(2\overrightarrow{AE}=\overrightarrow{EC}\)
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. AM cắt DE tại H. Chứng minh rằng:
a) Tam giác AMB = tam giác AMC và suy ra AM \(\perp\)BC
b) Tam giác AHD = tam giác AHE và DE // BC
c) Gọi I là trung điểm của EC. Tia MI cắt tia DE tại K . Chứng minh CK // ME
Cho tam giác ABC cân tại A (A>90 độ), trên cạnh BC lấy 2 điểm D và E sao cho BD=DE=EC. kẻ BH vuông góc AD, CK vuông góc AE ( H ∈ AD ,K ∈ AE). BH cắt CK tại G.
a) Chứng minh tam giác ADE cân.
b) Chứng minh BH=CK.
c) Gọi M là trung điểm của BC , chứng minh : A,M,G thẳng hàng.
d) Chững minh :AC>AD.
e) Chứng minh :góc DAE >DAB.
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. AM cắt DE tại H. Chứng minh rằng:
a) tam giác AMB = tam giác AMC và suy ra BC ⊥ AM .
b) tam giác AHD = tam giác AHE và DE//BC .
c) Gọi I là trung điểm của EC. Tia MI cắt tia DE tại K. Chứng minh CK//ME.
Giúp mik với nha các bạn ;-;
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. AM cắt DE tại H. Chứng minh rằng:
a) tam giác AMB = tam giác AMC và suy ra BC ⊥ AM .
b) tam giác AHD = tam giác AHE và DE//BC .
c) Gọi I là trung điểm của EC. Tia MI cắt tia DE tại K. Chứng minh CK//ME.
Giúp mik với nha các bạn ;-;
Cho tam giác ABC có AB=AC, M là trung điểm của BC. Chứng minh rằng: tam giác AMB = tam giác AMC.
a) Trên cạnh AB lấy điểm D. Từ D kẻ đường vuông góc với AM tại K và kéo dài cắt cạnh AC TẠI E. Chứng minh AD=AE.
b) Trên tia đối của tia ED lấy điểm F sao cho EF=MC, gọi H là trung điểm của EC. Chứng minh rằng: ba điểm M, H, F thẳng hàng.
Ta co AB = AC => Tam giác ABC là tam giác cân tại A
Kẻ AM
Xét hai tam giác AMB và tam giác AMC có:
BM =MC ( Vì M là trung điểm của BC)
gÓC B = góc C ( vì ABC là tam giác cân)
AB = BC ( gt)
=> Tam giác ABM = tam giác AMC ( c.g.c)
Cho tam giác ABC cân tại A ( ), trên cạnh BC lấy 2 điểm D và E sao cho BD = DE = EC. Kẻ ; , BH cắt CK tại G. a) Chứng minh tam giác ADE cân b) Chứng minh BH = CK c) Gọi M là trung điểm của BC, chứng minh A, M, G thẳng hàng d) Chứng minh AC > AD
mình thấy đề nó sai sai
Cho tam giác ABC cân tại A ( ), trên cạnh BC lấy 2 điểm D và E sao cho BD = DE = EC. Kẻ ; , BH cắt CK tại G. a) Chứng minh tam giác ADE cân b) Chứng minh BH = CK c) Gọi M là trung điểm của BC, chứng minh A, M, G thẳng hàng d) Chứng minh AC > AD
kẻ BH với CK như nào cũng được hay BH⊥AC;CK⊥AB hay H là trung điểm của AC,K là trung điểm của AB
Cho tam giác đều ABC, AB = 2a. Gọi M là trung điểm của cạnh BC.
a, Chứng minh rằng: \(\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}\)
b, Tính \(\left|\overrightarrow{AM}+\overrightarrow{AC}\right|\) theo a?
c, Tìm vị trí điểm N thỏa mãn: \(3\overrightarrow{NA}+3\overrightarrow{NB}+2\overrightarrow{NC}=\overrightarrow{0}\)
Có vẻ không đúng.
Giả sử \(\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MB}+\left(\overrightarrow{MA}+\overrightarrow{AB}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MB}+\overrightarrow{MB}=\overrightarrow{0}\)
\(\Leftrightarrow2\overrightarrow{MB}=\overrightarrow{0}\)
\(\Leftrightarrow M\equiv B\) (Vô lí)
Hình vẽ:
a, Chứng minh \(\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{MA}=\overrightarrow{0}\)
Ta có \(\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{MA}=\overrightarrow{BM}+\left(\overrightarrow{MA}+\overrightarrow{AB}\right)=\overrightarrow{BM}+\overrightarrow{MB}=\overrightarrow{0}\)
b, Gọi H là trung điểm \(MC\)
Ta có \(AM=\sqrt{AC^2-MC^2}=\sqrt{4a^2-a^2}=a\sqrt{3}\)
\(AH=\sqrt{AM^2+MH^2}=\sqrt{\left(a\sqrt{3}\right)^2+\left(\dfrac{a}{2}\right)^2}=a.\dfrac{\sqrt{13}}{2}\)
\(\left|\overrightarrow{AM}+\overrightarrow{AC}\right|=\left|2\overrightarrow{AH}\right|=2AH=a\sqrt{13}\)
c, Gọi D là trung điểm AB
\(3\overrightarrow{NA}+3\overrightarrow{NB}+2\overrightarrow{NC}=3\left(\overrightarrow{NA}+\overrightarrow{NB}\right)+2\overrightarrow{NC}=6\overrightarrow{ND}+2\overrightarrow{NC}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{NC}=3\overrightarrow{DN}\)
Vậy N thuộc đoạn CD sao cho \(CN=\dfrac{3}{4}CD\)
cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD= AE a) chứng minh tam giác ABM= tam giác ACM
a) Chứng minh: tam giác ABM= tam giác ACM
b) Chứng minh AM vuông góc BC
c) Chứng minh tam giác ADM = tam giác AEM
d) Gọi H là trung điểm của cạnh EC. Từ C vẽ đường thẳng song song với cạnh ME, đường thẳng này cắt tia MH tại F. Chứng minh ba điểm D;E;F thẳng hang
Cho tam giác ABC vuông cân tại A. Gọi E là trung điểm của BC. M là điểm bất kì thuộc cạnh BC (M khác E). Kẻ BH vuông góc với AM tại H và CK vuông góc với AM tại K.
a) Chứng minh △KAC = △HBA
b) Chứng minh AE vuông góc với BC.
c) Tam giác KEH là tam giác gì? Vì sao?
b: Ta có: ΔABC cân tại A
mà AE là đường trung tuyến
nên AE là đường cao