Find the maximum value of:
a) \(-3x^2-9x-25\)
b) \(x-x^2\)
c) \(-x^2+7x+12\)
Find the maximum value of
a) A=\(4x-x^2+3\)
b) B= \(x-x^2\)
c) C= \(2x-2x^2-5\)
d) D = \(4x-x^2-5\)
e) E = \(-x^2-6x-10\)
f) F = \(8x-x^2-20\)
g) G = \(4x-2x^2+3\)
h) H = \(12x-12^2+2\)
i) I = \(-x^2+7x+12\)
k) K= \(-3x^2-9x-25\)
a: \(A=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left(x-2\right)^2+7< =7\)
Dấu '=' xảy ra khi x=2
b: \(B=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)
Dấu '=' xảy ra khi x=1/2
c: \(C=-2\left(x^2-x+\dfrac{5}{2}\right)\)
\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)
Dấu '=' xảy ra khi x=1/2
e: \(E=-\left(x^2+6x+9+1\right)=-\left(x+3\right)^2-1< =-1\)
Dấu = xảy ra khi x=-3
the maximum value of C=x2+8/(2(x2+2)
find the smallest or the greast value of:
a) A=(x+1)(2x-1)
b)B=5x-3x2+2
a) A = \(2x^2+x-1=2\left(x^2+\frac{1}{2}x+\frac{1}{16}\right)\)\(-\frac{9}{8}=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)
Vì \(\left(x+\frac{1}{4}\right)^2\ge0\forall x\Leftrightarrow2\left(x+\frac{1}{4}\right)^2\ge0\forall x\Leftrightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\forall x\Leftrightarrow A\ge-\frac{9}{8}\)
Dấu = xảy ra \(\Leftrightarrow\)\(x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)
Vậy minA =\(-\frac{9}{8}\)khi \(x=-\frac{1}{4}\).
b) B=\(5x-3x^2+2=-3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{49}{12}=-3\left(x-\frac{5}{6}\right)^2+\frac{49}{12}\)
Vì \(\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow-3\left(x-\frac{5}{6}\right)^2\le0\forall x\Leftrightarrow-3\left(x-\frac{5}{6}\right)^2+\frac{49}{12}\le\frac{49}{12}\forall x\Leftrightarrow B\le\frac{49}{12}\forall x\)
Dấu = xảy ra \(\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy maxB = \(\frac{49}{12}\)khi \(x=\frac{5}{6}\).
Given Q = \(x\left(3x-2\right)+3x\left(1-2x\right)+6x+2\)
Find the maximum of Q
the maximum value of \(\frac{\left(x^2+15\right)}{x^2+3}\)
\(\frac{x^2+15}{x^2+3}\)
\(=\frac{x^2+3+12}{x^2+3}\)
\(=\frac{x^2+3}{x^2+3}+\frac{12}{x^2+3}\)
\(=1+\frac{12}{x^2+3}\)
\(x^2\ge0\)
\(x^2+3\ge3\)
\(\frac{12}{x^2+3}\le4\)
\(1+\frac{12}{x^2+3}\le5\)
ĐS: 5
PTĐTTNT bằng 3 cách
a)x^2+7x+12
b)3x^2-5x+2
c)x^2+9x-10
d)x^2-7x-8
e)2x^2+3x-5
a) \(x^2+7x+12\)
\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
b) \(3x^2-5x+2\)
\(=3x^2-3x-2x+2\)
\(=3x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(3x-2\right)\)
a) x2 + 7x + 12 = x2 + 3x + 4x + 12 = x(x + 3) + 4(x + 3) = (x + 4)(x + 3)
b) 3x2 - 5x + 2 = 3x2 - 3x - 2x + 2 = 3x(x - 1) - 2(x - 1) = (3x - 2)(x - 1)
c) x2 + 9x - 10 = x2 + 10x - x - 10 = x(x + 10) - (x + 10) = (x - 1)(x + 10)
d) x2 - 7x - 8 = x2 - 8x + x - 8 = x(x - 8) + (x - 8) = (x + 1)(x - 8)
e) 2x2 + 3x - 5 = 2x2 + 5x - 2x - 5 = x(2x + 5) - (2x + 5) = (x - 1)(2x + 5)
bài 1: Giải phương trình a. ( 5-x)(2+3x) = 4-9x2 b. 25-x2 = 4x(5+x) c. x2-2x+1 = 3x(x-1) d. 4(7x-3) = 7x2-3x e. (x-5)4+(x-3)4 = 16
a: \(\Leftrightarrow\left(3x+2\right)\left(5-x\right)=-9x^2+4\)
\(\Leftrightarrow\left(3x+2\right)\left(5-x\right)+\left(3x+2\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(2x+3\right)=0\)
=>x=-2/3 hoặc x=-3/2
b: \(\Leftrightarrow4x\left(x+5\right)+x^2-25=0\)
\(\Leftrightarrow\left(x+5\right)\left(5x-5\right)=0\)
=>x=-5 hoặc x=1
c: \(\Leftrightarrow3x\left(x-1\right)=\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)
=>x=1 hoặc x=-1/2
Question 2: Find the value of x is ......
a. 2 b. 8 c. 4 d. 6
find the value of n such that the polynomial 2x^5 - 3x^3 + x^2 +n is divisible by the polynomial x+2
tìm giá trị của n sao cho đa thức 2x ^ 5 - 3x ^ 3 + x ^ 2 + n chia hết cho đa thức x + 2