Biết các số thực x,y thỏa mãn : x2+y2=1
Hãy CM: \(-\sqrt{2}\le x+y\le\sqrt{2}\)
Cho x, y là các số thực dương thỏa mãn \(x^2+y^2=1\). Chứng minh rằng
\(x\sqrt{1+y}+y\sqrt{1+x}\le\sqrt{2+\sqrt{2}}\)
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left(x\cdot1+y\cdot1\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2\Rightarrow x+y\le\sqrt{2}\)
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left(x\sqrt{1+y}+y\sqrt{1+x}\right)^2\le\left(x^2+y^2\right)\left(1+y+1+x\right)=x+y+2=2+\sqrt{2}\)
\(\Rightarrow x\sqrt{y+1}+y\sqrt{x+1}\ge\sqrt{2+\sqrt{2}}\)
Dấu = xảy ra khi \(x=y=\dfrac{1}{\sqrt{2}}\)
Cho các số thực không âm x,y thỏa mãn x+y=2
Chứng minh rằng: 2 \(\le\sqrt{x^2+y^2}+\sqrt{xy}\le\sqrt{6}\)
\(x+y=2\Rightarrow y=2-x\)
\(A=\sqrt{x^2+\left(2-x\right)^2}+\sqrt{x\left(2-x\right)}=\sqrt{2x^2-4x+4}+\sqrt{-x^2+2x}\)
\(A^2=x^2-2x+4+2\sqrt{2x^2-4x+4}.\sqrt{-x^2+2x}\)
\(+A\ge2\Leftrightarrow A^2\ge4\Leftrightarrow x^2-2x+4+2\sqrt{-2x^4+8x^3-12x^2+8x}\ge4\)
\(\Leftrightarrow2\sqrt{-2x^4+8x^3-12x^2+8x}\ge x\left(2-x\right)\)
\(\Leftrightarrow4\left(-2x^4+8x^3-12x^2+8x\right)\ge x^2\left(2-x\right)^2\text{ }\left(do\text{ }x\left(2-x\right)\ge0\right)\)
\(\Leftrightarrow x\left(2-x\right)\left(9x^2-18x+16\right)\ge0\)
Bất đẳng thức trên đúng vì :
\(x\ge0;\text{ }2-x=y\ge0;\text{ }9x^2-18x+16=9\left(x-1\right)^2+7>0\)
Vậy \(A\ge2\)
Tương tự, ta có thể chứng minh \(A\le\sqrt{6}\)
Cách khác: \(x+y=2\Rightarrow x^2+y^2+2xy=4\Rightarrow x^2+y^2=4-2xy\)
Đặt \(t=\sqrt{xy};t\ge0;\text{ }t\le\frac{x+y}{2}=1\)
\(\sqrt{x^2+y^2}+\sqrt{xy}=\sqrt{4-2t^2}+t\)
\(+\sqrt{4-2t^2}+t\ge2\Leftrightarrow\sqrt{4-2t^2}\ge2-t\)
\(\Leftrightarrow4-2t^2\ge t^2-4t+4\text{ }\left(do\text{ }2-t>0\right)\)
\(\Leftrightarrow3t^2-4t\le0\Leftrightarrow t\left(3t-4\right)\le0\)
BĐT trên đúng đo \(t\ge0;\text{ }3t-4\le3.1-4=-1<0\)
Vậy \(\sqrt{4-2t^2}+t\ge2\)
Làm tương tự với vế còn lại.
Cho các số thực không âm x, y thỏa mãn x+y=2. Chứng minh rằng: \(2\le\sqrt{x^2+y^2}+\sqrt{xy}\le\sqrt{6}\)
Cho các số thực dương x, y, z thỏa mãn xyz = 1. Chứng minh rằng:
\(\dfrac{1}{\sqrt{x^2+1}}+\dfrac{1}{\sqrt{y^2}+1}+\dfrac{1}{z^2+1}\le\dfrac{3}{\sqrt{2}}\)
Áp dụng BĐT cô si với ba số không âm ta có :
=> (1)
Dấu '' = '' xảy ra khi x = 1
CM tương tự ra có " (2) ; (3)
Dấu ''= '' xảy ra khi y = 1 ; z = 1
Từ (1) (2) và (3) =>
BĐT được chứng minh
Dấu '' = '' của bất đẳng thức xảy ra khi x =y =z = 1
:()
Giúp mình với mình đang cần gấp !
Cho x,y là các số thực thỏa mãn : \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
CMR : x2+y2=1
Giúp mình với mình đang cần gấp !
Cho x,y là các số thực thỏa mãn :\(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
CMR : x2+y2=1
Ta có:
\(x\sqrt{1-y^2}+y.\sqrt{1-x^2}\le\dfrac{1}{2}\left(x^2+1-y^2\right)+\dfrac{1}{2}\left(y^2+1-x^2\right)=1\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x=\sqrt{1-y^2}\\y=\sqrt{1-x^2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2=1-y^2\\y^2=1-x^2\end{matrix}\right.\)
\(\Rightarrow x^2+y^2=1\) (đpcm)
Cho x,y là các số thực không âm thỏa mãn x,y\(\le\)1
chứng minh rằng:\(\frac{x+y}{2}\le\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\le1\)
. Cho các số thực x,y thỏa mãn 0<x<1, 0<y<1 Chứng minh rằng \(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}\)
Cho x, y là các số thực thỏa mãn 0<x, y<1.
Chứng minh rằng \(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}.\)