Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoài Thu Vũ
Xem chi tiết
Sahara
11 tháng 5 2023 lúc 20:28

Ta có:
\(\dfrac{2001}{2002}< 1\)
\(1< \dfrac{2021}{2003}\)
\(\Rightarrow\dfrac{2001}{2002}< \dfrac{2021}{2003}\)

#Đang Bận Thở

Demo:))
11 tháng 5 2023 lúc 20:29

a) 2001 : 2002

b) 2021 : 2003

.Gió..
11 tháng 5 2023 lúc 20:29

Vì 2001 < 2002 

=> 2001/2002 < 1 ( 1 ) 

có 2021 > 2003

=> 2021/2003 > 1 ( 2 ) 

Từ ( 1 ) và ( 2 ) => 2001/2002 < 2021/2003

Nguyễn Anh Minh
Xem chi tiết
Nguyễn Minh Dương
23 tháng 8 2023 lúc 8:46

Ta có: \(2003^{2003}+1=2003^{2002+1}+1và2003^{2004}+1=2003^{2003+1}+1\)

\(\Rightarrow A>B\)

Đào Trí Bình
23 tháng 8 2023 lúc 9:13

A > B

Sesshomaru
Xem chi tiết
Đ𝒂𝒏 𝑫𝒊ệ𝒑
8 tháng 8 2019 lúc 14:04

Ta có

\(\frac{2002}{2003}< 1< \frac{14}{13}\)

\(\frac{\Rightarrow2002}{2003}< \frac{14}{13}\)

\(\hept{\begin{cases}\frac{2002}{2003}< 1\\\frac{14}{13}>1\end{cases}\Leftrightarrow\frac{2002}{2003}< 1< \frac{14}{13}}\)

vậy \(\frac{2002}{2003}< \frac{14}{13}\)

Lily
8 tháng 8 2019 lúc 14:35

                                              Bài giải

\(\frac{2002}{2003}< 1< \frac{14}{13}\)

\(\Rightarrow\text{ }\frac{2002}{2003}< \frac{14}{13}\)

hoàng gia bảo
Xem chi tiết
Nguyễn Hưng Phát
20 tháng 7 2016 lúc 12:52

So sánh:

Ta có:\(\hept{\begin{cases}\frac{2002}{2003}< \frac{2003}{2003}=1\\\frac{14}{13}>\frac{13}{13}=1\end{cases}}\)

\(\Rightarrow\frac{14}{13}>\frac{2002}{2003}\)

TRỊNH THỊ QUỲNH
Xem chi tiết
Natsu Dragneel
12 tháng 9 2017 lúc 20:53

lolanga)Ta có :

\(-\dfrac{265}{317}< -\dfrac{83}{317}< -\dfrac{83}{111}\Rightarrow-\dfrac{265}{317}< -\dfrac{83}{111}\)

b)Ta có :

\(\dfrac{2002}{2003}< 1< \dfrac{14}{13}\Rightarrow\dfrac{2002}{2003}< \dfrac{14}{13}\)

c)Ta có :

\(\dfrac{-1}{-3}=\dfrac{1}{3}\Rightarrow-\dfrac{27}{463}< 0< \dfrac{1}{3}\Rightarrow-\dfrac{27}{463}< \dfrac{1}{3}\)hehe

ANH HOÀNG
Xem chi tiết
Lấp La Lấp Lánh
18 tháng 9 2021 lúc 12:38

Bài 1:

a) \(\left|3x-5\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)

c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow x=-2004\)( do \(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\))

Bài 2:

a) \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)

\(=\dfrac{1}{4}+\dfrac{3}{4}=1\)

b) \(=-\left(\dfrac{1}{99.100}+\dfrac{1}{98.99}+\dfrac{1}{97.98}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)\)

\(=-\left(\dfrac{1}{99}-\dfrac{1}{100}+\dfrac{1}{98}-\dfrac{1}{99}+...+1-\dfrac{1}{2}\right)\)

\(=-\left(1-\dfrac{1}{100}\right)=-\dfrac{99}{100}\)

 

Edogawa Conan
18 tháng 9 2021 lúc 12:43

Bài 1:

a) \(\left|3x-5\right|=4\)  (1)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=9\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)

b) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Leftrightarrow x+1=0\)    \(\left(do\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\)

\(\Leftrightarrow x=-1\)

c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Leftrightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)

\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2004=0\)           \(\left(do\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\right)\)

\(\Leftrightarrow x=-2004\)

Đinh Châu Anh
Xem chi tiết
⭐Hannie⭐
1 tháng 3 2023 lúc 11:17

ta có : `12/14 = 6/7`

`13/24=(13xx7)/(24xx7)= 91/168`

`6/7=(6xx24)/(7xx24)= 144/168`

mà : `91<144`

`=> 13/24 < 12/14`

\(\dfrac{13}{24}\) = \(\dfrac{13\times7}{24\times7}\) = \(\dfrac{91}{168}\)

\(\dfrac{12}{14}\) = \(\dfrac{12\times12}{14\times12}\) = \(\dfrac{144}{168}\)

\(\dfrac{91}{689}< \dfrac{144}{168}\)

\(\dfrac{13}{24}\) < \(\dfrac{12}{14}\)

Hanyi Chee
Xem chi tiết
Nguyễn Nhã Hiếu
25 tháng 8 2017 lúc 19:41

a)\(\dfrac{2002}{2003}\)\(\dfrac{14}{13}\)

\(\dfrac{2002}{2003}< 1;\dfrac{14}{13}>1\)

\(\Rightarrow\dfrac{2002}{2003}< \dfrac{14}{13}\)

b)\(\dfrac{-33}{37}\)\(\dfrac{-34}{35}\)

Với phân số âm ,phân số nào cũng tử mà khác mẫu ,mẫu nào lớn hơn thì lớn hơn

\(\Rightarrow\dfrac{-33}{37}>\dfrac{-33}{35}\)

c)\(\dfrac{-27}{463}\)\(\dfrac{-1}{-3}\)

\(\dfrac{-27}{463}< 0;\dfrac{-1}{-3}=\dfrac{1}{3}>0\)

\(\Rightarrow\dfrac{-27}{463}< \dfrac{-1}{-3}\)

Ánh Nắng Ban Mai
Xem chi tiết
 Mashiro Shiina
21 tháng 8 2017 lúc 12:34

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

Nguyễn Huy Tú
21 tháng 8 2017 lúc 12:34

a, \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

Do \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy x = -1

b, \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

Vậy...

Hà An
21 tháng 8 2017 lúc 12:41

a. \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

Ta thấy: \(\dfrac{1}{10}>\dfrac{1}{11}>\dfrac{1}{12}>\dfrac{1}{13}>\dfrac{1}{14}\) nên biểu thức trong dấu ngoặc thứ hai khác 0. Do đó x + 1 = 0 => x = -1

b. \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)

\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Rightarrow x+2004=0\)

=> x = -2004