Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
DakiDaki
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 2 2022 lúc 8:29

1: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\)

hay \(x\in\left\{3;\dfrac{1}{4}\right\}\)

2: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2x+16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2+2x-16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-15\right)=0\)

hay \(x\in\left\{1;5\right\}\)

3: \(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(2x+1\right)=0\)

hay \(x\in\left\{1;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

4: \(\Leftrightarrow x^2\left(x+4\right)-9\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-3\right)\left(x+3\right)=0\)

hay \(x\in\left\{-4;3;-3\right\}\)

5: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=x-1\\3x+5=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-6\\4x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)

6: \(\Leftrightarrow\left(6x+3\right)^2-\left(2x-10\right)^2=0\)

\(\Leftrightarrow\left(6x+3-2x+10\right)\left(6x+3+2x-10\right)=0\)

\(\Leftrightarrow\left(4x+13\right)\left(8x-7\right)=0\)

hay \(x\in\left\{-\dfrac{13}{4};\dfrac{7}{8}\right\}\)

Nguyễn Ngọc Huy Toàn
14 tháng 2 2022 lúc 8:30

1.

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=\left(x-3\right)\left(5x-2\right)\)

\(\Leftrightarrow x+3=5x-2\)

\(\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\)

2.

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left(x^2-2x+16\right)\)

\(\Leftrightarrow x^2+x+1=x^2-2x+16\)

\(\Leftrightarrow3x=15\Leftrightarrow x=5\)

3.

\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2};x=-\dfrac{1}{2}\end{matrix}\right.\)

Nguyễn Ngọc Huy Toàn
14 tháng 2 2022 lúc 8:34

7.

\(\Leftrightarrow x^2+2x-15=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

8.\(\Leftrightarrow x^4+x^3+4x^3+4x^2=0\)

\(\Leftrightarrow x^3\left(x+1\right)+4x^2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+4x^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0;x=-4\end{matrix}\right.\)

9.\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(3-2x\right)\)

\(\Leftrightarrow x+2=3-2x\)

\(\Leftrightarrow3x=1\Leftrightarrow x=\dfrac{1}{3}\)

Tên ?
Xem chi tiết
Trúc Giang
18 tháng 7 2021 lúc 16:36

a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)

d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 22:59

a) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

b) Ta có: \(x^3+2x^2+2x+1\)

\(=\left(x^3+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:01

d) Ta có: \(a^6-a^4+2a^3+2a^2\)

\(=a^2\left(a^4-a^2+2a+2\right)\)

\(=a^2\left[a^2\left(a^2-1\right)+\left(2a+2\right)\right]\)

\(=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]\)

\(=a^2\cdot\left(a+1\right)\left(a^3-a+2\right)\)

c) Ta có: \(x^3-4x^2+12x-27\)

\(=\left(x^3-27\right)-\left(4x^2-12x\right)\)

\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

lê phúc
Xem chi tiết
Akai Haruma
25 tháng 10 2021 lúc 19:40

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

Akai Haruma
25 tháng 10 2021 lúc 19:44

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

Tên ?
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:17

e) Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\cdot\left(x-1\right)^3\)

h) Ta có: \(3x^2-3y^2-2\left(x-y\right)^2\)

\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:11

a) Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

b) Ta có: \(x^2\left(x+2y\right)-x-2y\)

\(=\left(x+2y\right)\left(x^2-1\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:12

c) Ta có: \(x^3-4x^2-9x+36\)

\(=x^2\left(x-4\right)-9\left(x-4\right)\)

\(=\left(x-4\right)\left(x^2-9\right)\)

\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)

d) Ta có: \(x^4+2x^3+2x-1\)

\(=\left(x^2-1\right)\left(x^2+1\right)+2x\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+2x-1\right)\)

thanh
Xem chi tiết
Lan Anh (Min)
18 tháng 2 2020 lúc 14:06

Có dòng chữ màu đỏ thì e chịu nhưng dấu k chọn màu xanh lá cây là giáo viên trong OLM k nha.

HOK TỐT

Khách vãng lai đã xóa
thanh
18 tháng 2 2020 lúc 14:40

Ok bạn

Khách vãng lai đã xóa
Phương Anh Trần
Xem chi tiết
Đinh Đức Hùng
5 tháng 3 2017 lúc 15:08

x1 + x2 + x3 + x4 + ....... + x49 + x50 + x51 = 0

<=>( x1 + x2) + (x3 + x4) + ....... + (x49 + x50) + x51 = 0

<=> 1 + 1 + ..... + 1 + x51 = 0 ( có [(50 - 1) : 1 + 1] . 2 = 25 số 1 )

<=> 25 + x51 = 0

=> x51 = - 25

Edogawa Conan
5 tháng 3 2017 lúc 15:05

trong violympic ak ra đề thiếu cà ai làm đc

nhok buồn vui
5 tháng 3 2017 lúc 15:06

câu 1:0x bất cứ số nào cũng =0=>x=0

câu 2:sai

thanh
Xem chi tiết
lương thanh thảo
18 tháng 2 2020 lúc 20:08

chả hiểu gì

Khách vãng lai đã xóa
thanh
18 tháng 2 2020 lúc 20:10

Ê ko hiểu thì bớt cái mỏ sân si lại nhá 

Khách vãng lai đã xóa
ღŤ.Ť.Đღ
18 tháng 2 2020 lúc 20:10

Nếu mà k đc cậu hỏi của mk thì mk đăng câu nào cũng k rồi .

Còn câu trả lời ở câu của bn, bn k đúng cko ng đó coi như câu đó cậu cko là đúng nhât đó

Khách vãng lai đã xóa
thanh
Xem chi tiết
Vinh Thuy Duong
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 7 2021 lúc 14:31

a) Ta có: \(\dfrac{4x^2-3x-7}{A}=\dfrac{4x-7}{2x+3}\)

\(\Leftrightarrow A=\dfrac{\left(2x+3\right)\left(4x^2-3x-7\right)}{4x-7}\)

\(\Leftrightarrow A=\dfrac{\left(2x+3\right)\left(4x-7\right)\left(x+1\right)}{4x-7}\)

\(\Leftrightarrow A=\left(2x+3\right)\left(x+1\right)\)

\(\Leftrightarrow A=2x^2+5x+3\)

Nguyễn Lê Phước Thịnh
14 tháng 7 2021 lúc 14:32

b) Ta có: \(\dfrac{1}{B}=\dfrac{a+b}{a^3+b^3}\)

\(\Leftrightarrow\dfrac{1}{B}=\dfrac{a+b}{\left(a+b\right)\left(a^2-ab+b^2\right)}=\dfrac{1}{a^2-ab+b^2}\)

hay \(B=a^2-ab+b^2\)

Nguyễn Lê Phước Thịnh
14 tháng 7 2021 lúc 14:32

c) Ta có: \(\left(x^2+1\right)\cdot C=2x^3+3\)

\(\Leftrightarrow C=\dfrac{2x^3+3}{x^2+1}\)