a) Ta có: \(\dfrac{4x^2-3x-7}{A}=\dfrac{4x-7}{2x+3}\)
\(\Leftrightarrow A=\dfrac{\left(2x+3\right)\left(4x^2-3x-7\right)}{4x-7}\)
\(\Leftrightarrow A=\dfrac{\left(2x+3\right)\left(4x-7\right)\left(x+1\right)}{4x-7}\)
\(\Leftrightarrow A=\left(2x+3\right)\left(x+1\right)\)
\(\Leftrightarrow A=2x^2+5x+3\)
b) Ta có: \(\dfrac{1}{B}=\dfrac{a+b}{a^3+b^3}\)
\(\Leftrightarrow\dfrac{1}{B}=\dfrac{a+b}{\left(a+b\right)\left(a^2-ab+b^2\right)}=\dfrac{1}{a^2-ab+b^2}\)
hay \(B=a^2-ab+b^2\)
c) Ta có: \(\left(x^2+1\right)\cdot C=2x^3+3\)
\(\Leftrightarrow C=\dfrac{2x^3+3}{x^2+1}\)
e) Ta có: \(Q\left(x+1\right)=x^4-1\)
\(\Leftrightarrow Q=\dfrac{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}{x+1}\)
\(\Leftrightarrow Q=\left(x-1\right)\left(x^2+1\right)\)
\(\Leftrightarrow Q=x^3-x^2+x-1\)