Tìm giá trị nguyên
a)\(\dfrac{2x}{x-1}\)
b)\(\dfrac{2x+1}{3x+2}\)
Tìm x ϵ Z để : a) A = \(\dfrac{x^2-1}{x+2}\) có giá trị nguyên.
b) B = \(\dfrac{\left(x+1\right)^2+\left(x-1\right)^2}{2x^2-1}\) có giá trị nguyên.
c) C = \(\dfrac{2x-3}{3x-2}\) có giá trị nguyên.
d) D = \(\dfrac{x-1}{x^2+1}\) có giá trị nguyên.
Tìm giá trị nguyên của biến số x để BT đã cho cũng có giá trị nguyên
a) \(\dfrac{2x^3+x^2+2x+2}{2x+1}\)
b)\(\dfrac{3x^3-7x^2+11x-1}{3x-1}\)
c)\(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)
a:
ĐKXĐ: x<>-1/2
Để \(\dfrac{2x^3+x^2+2x+2}{2x+1}\in Z\) thì
\(2x^3+x^2+2x+1+1⋮2x+1\)
=>\(2x+1\inƯ\left(1\right)\)
=>2x+1 thuộc {1;-1}
=>x thuộc {0;-1}
b:
ĐKXĐ: x<>1/3
\(\dfrac{3x^3-7x^2+11x-1}{3x-1}\in Z\)
=>3x^3-x^2-6x^2+2x+9x-3+2 chia hết cho 3x-1
=>2 chia hết cho 3x-1
=>3x-1 thuộc {1;-1;2;-2}
=>x thuộc {2/3;0;1;-1/3}
mà x nguyên
nên x thuộc {0;1}
c:
ĐKXĐ: x<>2
\(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\in Z\)
=>\(\left(x^2-4\right)\left(x^2+4\right)⋮\left(x-2\right)^2\left(x^2+4\right)\)
=>\(x+2⋮x-2\)
=>x-2+4 chia hết cho x-2
=>4 chia hết cho x-2
=>x-2 thuộc {1;-1;2;-2;4;-4}
=>x thuộc {3;1;4;0;6;-2}
Tìm các giá trị nguyên của x để mỗi biểu thức sau có giá trị nguyên:
a) \(\dfrac{6}{2x+1}\) d)\(\dfrac{2x+3}{x-3}\)
b)\(\dfrac{-15}{3x-1}\) e)\(\dfrac{x+3}{2x-1}\)
c)\(\dfrac{x-3}{x-1}\)
a, \(\dfrac{6}{2x+1}\Rightarrow2x+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
| 2x + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
| 2x | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
| x | 0 | -1 | 1/2 ( loại ) | -3/2 ( loại ) | 1 | -2 | 5/2 ( loại ) | -7/2 ( loại ) |
c, \(\dfrac{x-3}{x-1}=\dfrac{x-1-2}{x-1}=1-\dfrac{2}{x-1}\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
| x - 1 | 1 | -1 | 2 | -2 |
| x | 2 | 0 | 3 | -1 |
tương tự ....
cho biểu thức : A = \(\dfrac{2x}{x-3}\) + \(\dfrac{2x^2+3x+1}{9-x^2}\) B = \(\dfrac{x-1}{x-3}\)
a)tính B khi x = 5
b)rút gọn biểu thức A
c)đặt P = A : B .tìm giá trị nguyễn của x dể P có giá trị là số nguyên
a: Thay x=5 vào B, ta được:
\(B=\dfrac{5-1}{5-3}=\dfrac{4}{2}=2\)
b: \(A=\dfrac{2x^2+6x-2x^2-3x-1}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-1}{\left(x+3\right)\left(x-3\right)}\)
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
a) \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
Tìm x thuộc Z để biểu thức có giá trị nguyên
a) A=\(\dfrac{3x+21}{x+4}\)
b) B=\(\dfrac{2x^3-7x^2+7x+5}{2x-1}\)
a)
ĐKXĐ: \(x\ne-4\)
Để A nguyên thì \(3x+21⋮x+4\)
\(\Leftrightarrow3x+12+9⋮x+4\)
mà \(3x+12⋮x+4\)
nên \(9⋮x+4\)
\(\Leftrightarrow x+4\inƯ\left(9\right)\)
\(\Leftrightarrow x+4\in\left\{1;-1;3;-3;9;-9\right\}\)
\(\Leftrightarrow x\in\left\{-3;-5;-1;-7;5;-13\right\}\)(nhận)
Vậy: Để A nguyên thì \(x\in\left\{-3;-5;-1;-7;5;-13\right\}\)
b) ĐKXĐ: \(x\ne\dfrac{1}{2}\)
Để B nguyên thì \(2x^3-7x^2+7x+5⋮2x-1\)
\(\Leftrightarrow2x^3-x^2-6x^2+3x+4x-2+7⋮2x-1\)
\(\Leftrightarrow x^2\left(2x-1\right)-3x\left(2x-1\right)+2\left(2x-1\right)+7⋮2x-1\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-3x+2\right)+7⋮2x-1\)
mà \(\left(2x-1\right)\left(x^2-3x+2\right)⋮2x-1\)
nên \(7⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(7\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;8;-6\right\}\)
hay \(x\in\left\{1;0;4;-3\right\}\)(nhận)
Vậy: \(x\in\left\{1;0;4;-3\right\}\)
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
\(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
ĐKXĐ: \(x\ne1\)
Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)
\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)
\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)
\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)
Để B nguyên thì \(3⋮\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)
mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)
\(\Leftrightarrow x-1\in\left\{1;9\right\}\)
hay \(x\in\left\{2;10\right\}\) (nhận)
Vậy: \(x\in\left\{2;10\right\}\)
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
\(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
Tìm giá trị số nguyên x để A=\(\dfrac{\sqrt{3x-2}}{x-1}+\dfrac{6}{\sqrt{13-2x}}\) là số nguyên?
Tìm các giá trị nguyên của x để các phân số sau có giá trị là số nguyên: (+trình bày cách làm)
a. \(\dfrac{-3}{x-1}\)
b. \(\dfrac{-4}{2x-1}\)
c. \(\dfrac{3x+7}{x-1}\)
d. \(\dfrac{4x-1}{3-x}\)
a, \(x-1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
| x-1 | 1 | -1 | 3 | -3 |
| x | 2 | 0 | 4 | -2 |
b, \(2x-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
| 2x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
| x | 1 | 0 | loại | loại | loại | loại |
c, \(\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\Rightarrow x-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
| x-1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
| x | 2 | 0 | 3 | -1 | 6 | -4 | 11 | -9 |
d, \(\dfrac{4\left(x-3\right)+3}{-\left(x-3\right)}=-4-\dfrac{3}{x+3}\Rightarrow x+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
| x+3 | 1 | -1 | 3 | -3 |
| x | -2 | -4 | 0 | -6 |