tìm max min \(\sqrt{6-x}+\sqrt{x+3}\)
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
Bài 1: Tìm min max của các bthuc sau
a,A=\(\sqrt{x-2}+\sqrt{6-x}\)
b,B= \(\sqrt{2x+3}+\sqrt{13-2x}\)
c.,C=\(\sqrt{3x+9}+\sqrt{7-3x}\)
a) \(A=\sqrt{x-2}+\sqrt{6-x}\)
\(\Rightarrow A^2=x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)
Ta có \(\sqrt{\left(x-2\right)\left(6-x\right)}\ge0,\forall x\)
Do đó \(A^2=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)
Mà A không âm \(\Leftrightarrow A\ge2\)
Dấu "=" \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
Áp dụng BĐT Bunhiacopxky:
\(A^2=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\le\left(x-2+6-x\right)\left(1+1\right)=4\cdot2=8\)
\(\Leftrightarrow A\le\sqrt{8}\)
Dấu "=" \(\Leftrightarrow x-2=6-x\Leftrightarrow x=4\)
Mấy bài còn lại y chang nha
Tick hộ nha
1)TÌM H min = \(\sqrt{x^2+4}+\sqrt{x^2+8x+17}\)
2) tìm G min,max A=3x+x\(\sqrt{5-x^2}\)
3)tìm min,max B=\(\sqrt{5x-x^2}+\sqrt{18+3x-x^2}\)
câu 1
ta có .....
lười viết Min - cốp xki nha
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
ta có \(A^2\le25\)và ta cx có \(-5\le A\le5\)
nhưng dễ thấy \(A=-5\)không xảy ra, vô lí nên ...........bạn xem đoạn sau nhé ( tiếp phần kia )
a) Tìm min max A = \(\frac{4x+3}{x^2+1}\)
b) Cho x + y = 15 Tìm min max B = \(\sqrt{x-4}+\sqrt{y-3}\)
Cho x; y thoả mãn \(x-\sqrt{x-6}=\sqrt{x-6}-y\). Tìm min và max của P= x+y
Tìm Min, Max của : y =\(\dfrac{4}{\sqrt{2-cos\left(x-\dfrac{\pi}{6}\right)}+3}\)
ĐK: Biểu thức xác định với mọi `x`.
`y_(min) <=> (\sqrt(2-cos(x-π/6))+3)_(max) <=> (cos(x-π/6))_(max)`
`<=> cos(x-π/6)=1 <=> x-π/6=k2π <=> x = π/6+k2π ( k \in ZZ)`.
`=> y_(min) = 1`
`y_(max) <=> (\sqrt(2-cos(x-π/6))+3)_(min) <=> (cos(x-π/6))_(min)`
`<=> cos(x-π/6)=-1 <=> x -π/6= π+k2π <=> x = (7π)/6+k2π (k \in ZZ)`
`=> y_(max) = (6-2\sqrt3)/3`.
Giải dùm:
a, Tìm Min , Max:
4x-16\(\sqrt{x}\)+4y-22\(\sqrt{y}\)-4\(\sqrt{xy}\)+36
b,Tìm Max: \(\frac{6\sqrt{x}+3}{2x+4}\)
c,Tìm Min: \(\frac{2}{1-x}+\frac{1}{x}\left(0< x< 1\right)\)
Ukm
It's very hard
l can't do it
Sorry!
tìm min và max của : \(\sqrt{2+x}+\sqrt{2-x}-\sqrt{4-x^2}\)
Lời giải:
Đặt $\sqrt{2+x}=a; \sqrt{2-x}=b$. ĐK: $a,b\geq 0$
$a^2+b^2=4$
Gọi biểu thức cần tìm min max là $D$
$D=a+b-ab=(a-2)(2-b)+4-(a+b)$
Vì $a^2+b^2=4\Rightarrow a,b\leq 2$
$\Rightarrow (a-2)(2-b)\leq 0$
Mặt khác: $a^2+b^2=4\Rightarrow (a+b)^2=4+2ab\geq 4$
$\Rightarrow a+b\geq 2$
Do đó: $D=(a-2)(2-b)+4-(a+b)\leq 4-(a+b)\leq 2$
Vậy $D_{\max}=2$ khi $x=\pm 2$
--------------------
$4=a^2+b^2\geq 2ab\Rightarrow ab\leq 2$
$D=a+b-ab=\sqrt{4+2ab}-ab$
$=\sqrt{4+2ab}-2\sqrt{2}-(ab-2)+2\sqrt{2}-2$
$=\frac{2(ab-2)}{\sqrt{4+2ab}+2\sqrt{2}}-(ab-2)+2\sqrt{2}-2$
$=(ab-2)(\frac{2}{\sqrt{4+2ab}+2\sqrt{2}}-1)+2\sqrt{2}-2$
Vì $ab\leq 2\rightarrow ab-2\leq 0$
$ab\geq 0\Rightarrow \frac{2}{\sqrt{4+2ab}+2\sqrt{2}}-1 <\frac{2}{\sqrt{4}+2\sqrt{2}}-1<0$
$\Rightarrow D\geq 0+2\sqrt{2}-2=2\sqrt{2}-2$
Vậy $D_{\min}=2\sqrt{2}-2$ khi $x=0$
Tìm Min,Max của E=\(\sqrt{2-x}+\sqrt{x+6}\)
\(\left(-6\le x\le2\right)\)
E2 = 8+căn(2-x)(x+6)
+) vì căn (2-x)(x+6) >=
=> E2 >= 8
với đk -6<=x<=2 thì E luôn dương( câu này viết gọn thành E>= 0)
=> E>= căn 8=2 căn 2
=> Min E = 2 căn 2 khi x=-6 hoặc x=2
+)E2 = 8+căn( -x2 -4x+12)
E2=8 +căn(-x2-4x-4 + 16) = 8+căn(-(x+2)2 + 16) <= 8 + căn 16 = 8+4 = 12 ( vì -(x+2)2 <= 0 V x)
=>E<= căn12 = 2 căn 3
=> Max E = 2 căn 3 khi x=-2
học tốt
a sorry
phần max nha
E2 <= 8 + 2 căn 16 = 8+8=16
E>0 =>0< E<=4
=> MaxE = 4 khi x=-2
xin lỗi nhiều
học tốt
mấy cái khác đều có 2 căn (2-x)(x+6) nha