Cho a, b thuộc Q thỏa mãn: \(a+b\sqrt{2}=0\). CMR: a=b=0
Cho a, b thuộc Q thỏa mãn: \(a+b\sqrt{2}=0\). CMR: a=b=0
Ta có: \(\sqrt{2}>0\)
\(\Rightarrow b\sqrt{2}\ge0\)
Mà \(a+b\sqrt{2}=0\)
\(\Rightarrow b=0,a=0\)
\(\Leftrightarrow-a=b\sqrt{2}\)
Do vế trái là số hữu tỉ \(\Rightarrow b\sqrt{2}\) hữu tỉ
Mà b hữu tỉ, \(\sqrt{2}\) vô tỉ nên \(b\sqrt{2}\) hữu tỉ khi và chỉ khi:
\(b=0\)
\(\Rightarrow-a=0.\sqrt{2}=0\Rightarrow a=0\)
\(\Rightarrow a=b=0\)
cho a;b;c là các số hữu tỉ thỏa mãn \(a\sqrt{2}+b\sqrt{3}+c=0\)Cmr\(a=b=c=0\)
\(a\sqrt{2}+b\sqrt{3}=-c\)
\(\Leftrightarrow2a+3b+2ab\sqrt{6}=c^2\)
\(\Leftrightarrow2ab\sqrt{6}=c^2-2a-3b\)
Vì VT là số vô tỷ còn VP là số hữu tỷ nên để 2 vế bằng nhau thì.
\(\Rightarrow\hept{\begin{cases}ab=0\\c^2-2a-3b=0\end{cases}}\)
Với \(a=0\)
\(\Rightarrow b\sqrt{3}=-c\)
\(\Rightarrow b=c=0\)
Với \(b=0\)
\(\Rightarrow a\sqrt{2}=-c\)
\(\Rightarrow a=c=0\)
Vậy \(a=b=c=0\)
Cho a,b,c > 0 thỏa mãn a + b + c = 1.CMR:
\(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Easy!
\(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(=\sqrt{\frac{3}{2}}\left[\sqrt{\left(a+b\right).\frac{2}{3}}+\sqrt{\left(b+c\right).\frac{2}{3}}+\sqrt{\left(c+a\right).\frac{2}{3}}\right]\) (*)
Áp dụng BĐT Cô si ngược,ta có:
(*) \(\le\sqrt{\frac{3}{2}}\left[\frac{a+b+\frac{2}{3}}{2}+\frac{b+c+\frac{2}{3}}{2}+\frac{c+a+\frac{2}{3}}{2}\right]\)
\(=\sqrt{\frac{3}{2}}\left(a+b+c+1\right)=\sqrt{\frac{3}{2}}.2=\sqrt{6}^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a+b=b+c=c+a=\frac{2}{3}\\a+b+c=1\end{cases}\Leftrightarrow}a=b=c=\frac{1}{3}\)
Cho a,b,c>0 thỏa mãn abc=1
CMR B=\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{3\sqrt{2}}{2}\)
cho a,b,c thuộc Q thỏa mãn a + b\(\sqrt[3]{2}\)+ c\(\sqrt[3]{4}\)
chung minh a=b=c=0
Cho \(a,b,c\in Q\) thỏa mãn \(a+b\sqrt[3]{2}+c\sqrt[3]{4}=0\) \(\left(i\right)\)
Chứng minh rằng: \(a=b=c=0\)
\(-------\)
Chứng minh bổ đề: \(\sqrt[3]{2}\) là một số vô tỉ.
Đối với loại bài toán trên, ta cần dùng phương pháp phản chứng để tìm đáp án.
Thật vậy, giả sử \(R=\sqrt[3]{2}\) là một số hữu tỉ.
Tức là phải tồn tại các số nguyên \(m,n\) sao cho \(R=\frac{m}{n}\) nên \(R\) là nghiệm hữu tỉ của phương trình:
\(\left(\frac{m}{n}\right)^3=2;\)
Suy ra \(m\inƯ\left(2\right),\) \(n\inƯ\left(1\right)\)
Tuy nhiên, lại không tồn tại \(m\) nào là ước của \(2\) mà lũy thừa \(3\) (lập phương) bằng \(2\)
Do đó, suy ra điều giả sử sai!
Vậy, \(R\) là một số vô tỉ.
\(-------\)
Ta có:
\(\left(i\right)\) \(\Rightarrow\) \(c\sqrt[3]{2^2}+b\sqrt[3]{2}+a=0\) \(\left(ii\right)\)
Đặt \(a=z;\) \(b=y;\)và \(c=x\) \(\Rightarrow\) \(x,y,z\in Q\)
Ta biểu diễn lại phương trình \(\left(ii\right)\) dưới dạng ba biến số \(x,y,z\) như sau:
\(x\sqrt[3]{2^2}+y\sqrt[3]{2}+z=0\) \(\left(\alpha\right)\)
Giả sử phương trình \(\left(\alpha\right)\) tồn tại với ba ẩn \(x,y,z\) được xác định, ta có:
\(y\sqrt[3]{2^2}+z\sqrt[3]{2}+2x=0\) \(\left(\beta\right)\)
Từ \(\left(\alpha\right);\left(\beta\right)\) suy ra được \(\left(y^2-xz\right)\sqrt[3]{2}=\left(2x^2-yz\right)\)
Nếu \(2x^2-yz\ne0\) \(\Rightarrow\) \(\sqrt[3]{2}=\frac{2x^2-yz}{y^2-xz}\) là một số hữu tỉ. Trái với giả thiết!
\(\Rightarrow\) \(\hept{\begin{cases}y^2-xz=0\\2x^2-yz=0\end{cases}}\) \(\Rightarrow\) \(\hept{\begin{cases}y^3=xyz\\yz=2x^2\end{cases}}\)
\(\Rightarrow\) \(y^3=2x^3\) hay nói cách khác, \(y=x\sqrt[3]{2}\)
Nếu \(y\ne0\) thì \(\sqrt[3]{2}=\frac{y}{x}\in Q\) (mâu thuẫn với giả thiết theo bổ đề trên)
\(\Rightarrow\) \(x=0;y=0\)
Từ đó, ta dễ dàng chứng minh được \(z=0\)
Do đó, \(a=0;b=0;c=0\) (theo cách đặt trên)
Ngược lại, nếu \(a=b=c=0\) thì vẫn thỏa mãn \(\left(i\right)\) luôn đúng!
Vậy, tóm lại tất cả các điều đã nêu trên, kết luận \(a=b=c=0\)
khó quá bạn ơi mik ko biết
xin lỗi bạn nha
cho a,b dương và c ≠ 0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\). CMR: \(\sqrt{a+b}=\sqrt{b+c}+\sqrt{c+a}\)
Từ 1a+1b+1c=0⇒ab+bc+ac=01a+1b+1c=0⇒ab+bc+ac=0
Khi đó:
(√a+c+√b+c)2=a+c+b+c+2√(a+c)(b+c)(a+c+b+c)2=a+c+b+c+2(a+c)(b+c)
=a+b+2c+2√ab+ac+bc+c2=a+b+2c+2√c2=a+b+2c+2ab+ac+bc+c2=a+b+2c+2c2
=a+b+2c+2|c|=a+b+2c+2|c|
Vì a,ba,b dương nên −1c=1a+1b>0⇒c<0⇒2|c|=−2c−1c=1a+1b>0⇒c<0⇒2|c|=−2c
Do đó:
(√a+c+√b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b(a+c+b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b
⇒√a+c+√b+c=√a+b
Từ 1a+1b+1c=0⇒ab+bc+ac=01a+1b+1c=0⇒ab+bc+ac=0
Khi đó:
(√a+c+√b+c)2=a+c+b+c+2√(a+c)(b+c)(a+c+b+c)2=a+c+b+c+2(a+c)(b+c)
=a+b+2c+2√ab+ac+bc+c2=a+b+2c+2√c2=a+b+2c+2ab+ac+bc+c2=a+b+2c+2c2
=a+b+2c+2|c|=a+b+2c+2|c|
Vì a,ba,b dương nên −1c=1a+1b>0⇒c<0⇒2|c|=−2c−1c=1a+1b>0⇒c<0⇒2|c|=−2c
Do đó:
(√a+c+√b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b(a+c+b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b
⇒√a+c+√b+c=√a+b
cho a,b,c>0 thỏa mãn: a+b+c=3
CMR: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
Ta có: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\left(a+b+c\right)^2=9\)(*) (Do a+b+c = 3)
Ta sẽ c/m BĐT (*) luôn đúng. Thật vậy:
Áp dụng BĐT AM-GM cho 3 số không âm:
\(a^2+\sqrt{a}+\sqrt{a}\ge3\sqrt[3]{a^2\sqrt{a}.\sqrt{a}}=3a\Rightarrow a^2+2\sqrt{a}\ge3a\)
Tương tự: \(b^2+2\sqrt{b}\ge3b;c^2+2\sqrt{c}\ge3c\)
Cộng 3 BĐT trên theo vế thì có: \(a^2+b^2+c^2+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge3\left(a+b+c\right)=9\)
=> BĐT (*) luôn đúng với mọi a,b,c > 0 t/m a+b+c=3 => BĐT ban đầu đúng
\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\) (đpcm).
Dấu "=" xảy ra <=> a=b=c=1.
Cho a,b,c >0 thỏa mãn : \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=6\) 6
cmr \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}>=3\)
Mọi người ơi chỉ =6 thôi nha k phải 66 đâu
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
\(\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{6}{2}=3\)(BĐT \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Dấu "=" xảy ra khi \(a=b=c=2\)
cho a, b,c là số thực khác 0 thỏa mãn a+b+c=0 . CMR :
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)