2)x^2-2xy+y^2-2x+2y
3)3x^2-2x-5
4)16-x^2+4xy-4x^2
5)x^2-2x+1-y^2
6)x^2+8x+15
Giúp mik vs cần gấp!!!!
2)x^2-2xy+y^2-2x+2y
3)3x^2-2x-5
4)16-x^2+4xy-4x^2
5)x^2-2x+1-y^2
6)x^2+8x+15
7)(x^2+6x+8)(x^2+14x+48)-9
8)(x^2-8x+15)(x^2-16x+60)-24x^2
9)x^5+x^4+1
10)x^4-x^3-10x^2+2x+4
Bài 1: Phân tích đa thức thành nhân tử
1. 5x-10-xy+2y
2.2x^2+2y^2-4xy-xz+yz
3.5x^2y-10xy^2
4.3x^2-6xy+3y^2-12z^2
5.x^2+4xy-16+4y^2
6.7x-6x^2-2
7.(2x+y)^2+x(2x+y)
8.x(x-y)+5x-5y
9.x^2-y^2+2x+1
10.x^3-9x
11.xy-2y+x-2
12.x^3-3x^2-4x+12
13.3x-x^2-2xy+3y-y^2
\(1,=\left(x-2\right)\left(5-y\right)\\ 2,=2\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(2x-2y-z\right)\\ 3,=5xy\left(x-2y\right)\\ 4,=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-4z^2\right]\\ =3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\\ 6,=-\left(6x^2-3x-4x+2\right)=-\left(2x-1\right)\left(3x-2\right)\\ 7,=\left(2x+y\right)\left(2x+y+x\right)=\left(2x+y\right)\left(3x+y\right)\\ 8,=\left(x-y\right)\left(x+5\right)\\ 9,=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\\ 10,=\left(x^2-9\right)x=x\left(x-3\right)\left(x+3\right)\\ 11,=\left(x-2\right)\left(y+1\right)\\ 12,=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\\ 13,=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)
phân tích thành nhân tử
`3x^2 -3xy-5x+5y`
`2x^3 y-2xy^3 -4xy^2 -2xy`
`x^2 -1+2x-y^2`
`x^2 +4x-2xy-4y+4y^2`
`x^3 -2x^2 +x`
`2x^2 +4x+2-2y^2`
a) \(3x^2-3xy-5x+5y\)
\(=\left(3x^2-3xy\right)-\left(5x-5y\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
b) \(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left[x^2-\left(y+1\right)^2\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
c) \(x^2+1+2x-y^2\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
d) \(x^2+4x-2xy-4y+y^2\)
\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)^2+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+4\right)\)
e) \(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
f) \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)+y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x-y+1\right)\left(x+y+1\right)\)
a: =3x(x-y)-5(x-y)
=(x-y)(3x-5)
b: \(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
d:
Sửa đề: x^2+4x-2xy-4y+y^2
=x^2-2xy+y^2+4x-4y
=(x-y)^2+4(x-y)
=(x-y)(x-y+4)
e: =x(x^2-2x+1)
=x(x-1)^2
f: =2(x^2+2x+1-y^2)
=2[(x+1)^2-y^2]
=2(x+1+y)(x+1-y)
a. 3x^2-3y^2-x-y
b. 2x^2+4xy-16+2y^2
c. -x^2-x+2
d. 3x^2-7x+4
e.-2x^2+3x-1
f. x^2+2xy+y^2-2x-2y
g.x^3-2x^2+1
h.4x^2-3x-1
k. 2x^2+5x+3
l. x^2-2x-y^2+1
a) \(3x^2-3y^2-x-y\)
\(\Leftrightarrow3\left(x^2-y^2\right)-x-y\)
\(\Leftrightarrow3\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(\Leftrightarrow3\left(x-y\right)\)
d) \(3x^2-7x+4\)
\(\Leftrightarrow3x^2-7x+7-3\)
\(\Leftrightarrow\left(3x^2-3\right)-\left(7x-7\right)\)
\(\Leftrightarrow3\left(x^2-1\right)-7\left(x-1\right)\)
\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)-7\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(3\left(x+1\right)-7\right)\)
\(\Leftrightarrow\left(x+1\right)\left(3x-6\right)\)
e) \(-2x^2+3x-1\)
\(\Leftrightarrow\left(-2x^2-1^2\right)+3x\)
\(\Leftrightarrow\left(-2x-1\right)\left(-2x+1\right)+3x\)
f) \(x^2+2xy+y^2-2x-2y\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
k) \(2x^2+5x+3\)
\(\Leftrightarrow2x^2+2x+3x+3\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)\)
l) \(x^2-2x-y^2+1\)
\(\Leftrightarrow\left(x^2-2x+1\right)-y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2\)
\(\Leftrightarrow\left(x-1-y\right)\left(x-1+y\right)\)
a) \(3x^2-3y^2-x-y\)
\(\Leftrightarrow3\left(x^2-y^2\right)-x-y\)
\(\Leftrightarrow3\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(\Leftrightarrow3\left(x-y\right)\)
d) \(3x^2-7x+4\)
\(\Leftrightarrow3x^2-7x+7-3\)
\(\Leftrightarrow\left(3x^2-3\right)-\left(7x-7\right)\)
\(\Leftrightarrow3\left(x^2-1\right)-7\left(x-1\right)\)
\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)-7\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(3\left(x+1\right)-7\right)\)
\(\Leftrightarrow\left(x+1\right)\left(3x-6\right)\)
e) \(-2x^2+3x-1\)
\(\Leftrightarrow\left(-2x^2-1^2\right)+3x\)
\(\Leftrightarrow\left(-2x-1\right)\left(-2x+1\right)+3x\)
f) \(x^2+2xy+y^2-2x-2y\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
k) \(2x^2+5x+3\)
\(\Leftrightarrow2x^2+2x+3x+3\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)\)
l) \(x^2-2x-y^2+1\)
\(\Leftrightarrow\left(x^2-2x+1\right)-y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2\)
\(\Leftrightarrow\left(x-1-y\right)\left(x-1+y\right)\)
Bài 1: Rút gọn biểu thức sau:
A/ (x+3).(x^2-3x+9) -(54+x^3)
B/ (2x+y).(4x^2-2xy+y^2)-(2x-y).(4x^2+2xy+y^2)
C/ (2x-1)^2- (2x+2)^2
D/ (a+b)^3 - 3ab.(a+b)
Bài 2: tìm x, biết
A/ x^2-2x +1=25
B/ x^3 -3x^2= -3x+1
Bài 3 chứng minh rằng giá trị của biểu thức sau luôn dương với mọi giá trị của biến
A/ A= 4x^2+4x+2
B/ B= 2x^2-2x+1
bài 1 : a. x^3 +27 -54-x^3 =-27
b. 8x^3 +y^3 -8x^3 +y^3 =2y^3
c. (2x-1+2x+2)(2x-1-2x-2)=(4x+1).(-3)=-12x-3
d. a^3 +b^3 +3ab(a+b) -3ab(a+b)=a^3+b^3
A=(4x^2 +4x+1 )+1
A=(2x+1)^2 +1 >0
B=(x^2 -2x+1 )+x^2
B=(x-1)^2 +x^2 >0
6) Tính a)2xy(3x+1) b)-6x^2y(4x-5) c)-3x^2(4x^2y-6xy) d1/2xy^2(2x+3) e)8x^2y^2(1/4xy-1/2x^2) f)5x(x^2+3x+1) g)-1/2x^2y(2xy+6)
Để tính các biểu thức trên, ta sẽ áp dụng quy tắc nhân đa thức.
a) 2xy(3x+1) = 6x^2y + 2xy
b) -6x^2y(4x-5) = -24x^3y + 30x^2y
c) -3x^2(4x^2y-6xy) = -12x^4y + 18x^3y
d) 1/2xy^2(2x+3) = xy^2 + 3/2xy^2
e) 8x^2y^2(1/4xy-1/2x^2) = 2xy - 4x^2y^2
f) 5x(x^2+3x+1) = 5x^3 + 15x^2 + 5x
g) -1/2x^2y(2xy+6) = -x^3y - 3x^2y
rút gọn biểu thức
a)(x+3)(X^2-3x+9)-(54+x^3)
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
a) (x+3)(x^2-3x+9)-(54+x^3)
= x^3- 3x^2+9x+3x^2-9x+27-54-x63
= -27
b) (2x + y)(4x^2 – 2xy + y^2) – (2x – y)(4x^2+ 2xy + y^2)
= (2x + y)[(2x)^2 – 2x.y + y^2] – (2x – y)[(2x)^2 + 2x.y + y^2]
= [(2x)3^3+ y^3] – [(2x)^3 – y^3]
= (2x)^3 + y^3 – (2x)^3 + y^3
= 2y^3
a)(x+3)(X^2-3x+9)-(54+x^3)
= \(x^3\)+ \(3^3 \) - 54 -\(x^3\)
= 27- 54
= -27
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
= \((2x)^3\) + \(y^3\) - [\((2x)^3\) - \(y^3\) ]
= \(8x^3\) + \(y^3\) - \(8x^3\) + \(y^3\)
= \(2y^3\)
a) Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3+27-54-x^3\)
=-27
1. Tính
a) 2xy(3xy+2xy^2)
b) (2x-1)(x^2+2x+4)-(x^2-3x)*2x
2. Phân tích đa thức thành nhân tử
a) 4x^3y-8x^2y^2+4xy^3
b) 2xy+3xz+6y^2+xz
c) y^2-4x-4xy+4x^2+2y
3. Thực hiện phép chia
(6x^3-7x^2-x+z):(2x+1)
4. Tìm a để đa thức 2x^3+5x^2-2x+a chia hết đa thức 2x^2-x+1
5. Tìm max của biểu thức A=-2x^2+x-z
Bài 1. Tính
1. 4x^2 - 12x + 9
2. (x - 1/3)^2
3. (4x -x^2) . (4x + x^2)
4. (3x + 2y)^3
5. 27x^3 - 1/2
6. 8x^3 + 12xy + 6xy^2 + y^3
7. (2x + y) . (4x^2 - 2xy + y^2)
Bài 2. Rút gọn
1. (x - y) - (x + y)^2
2. (2x + 1) . (4x^2 - 2x + 1) - (2x - 1) . (4x^2 + 2x +1)
Bài 3. Tìm A
A = x^2 + y^2 - x + 6y + 10
Em cần gấp lắm ạ :( Mong anh, chị giải dùm em