A=x(x-y)+y(x+y), tại x=6 và y=5
a) x(x-y)+y(x+y) tại x=-6 và y=-5
b) x(x^2-y)-x^2(x+y)+y(x^2-x) tại x=1/2 và y=-100
Lời giải:
a)
$x(x-y)+y(x+y)=x^2-xy+xy+y^2=x^2+y^2=(-6)^2+(-5)^2=61$
b)
$x(x^2-y)-x^2(x+y)+y(x^2-x)=x^3-xy-x^3-x^2y+x^2y-xy$
$=-2xy=-2.\frac{1}{2}.(-100)=100$
Tính giá trị biểu thức:
a) A = 3 x 2 - 2 ( x - y ) 2 - 3 y 2 tại x = 4 và y = -4;
b) B = 4(x - 2)(x +1) + ( 2 x - 4 ) 2 + ( x + 1 ) 2 tại x = - 1 2 ;
c*) C = x 2 (y-z) + y 2 (z-x) + z 2 (x-y) tại x = 6, y = 5 và z = 4;
d*) D = x 2017 - 10 x 2016 + 10 x 2015 - . . . - 10 x 2 + l0x -10 với x = 9.
a) Tìm được A = (x- y)(x + 5y).
Thay x = 4 và y = -4 vào A tìm được A = -128.
b) Tìm được B = 9 ( x - 1 ) 2 .
Thay x = - 4 vào B tìm được B = 81 4 .
c) Tìm được C = (x - y)(y - z)(x - z).
Thay x = 6,y = 5 và z = 4 vào C tìm được C = 2.
d) Thay 10 = x +1 vào D và biến đổi ta được D = -1.
a) A=x(x^3+y)-x^2(x^2-y)-x^2(y-1) tại x=-10 và y=5
b) Tìm x biết 5x^3-3x^2+10x-6=0
c) Tìm x biết x^2+y^2-2x+4y+5=0
tính giá trị của biểu thức sau:
a)2x-\(\dfrac{y\left(x^2-2\right)}{xy+y}\)tại x=0;y=-1
b)A=4x^2-3IxI-2 tại x=2 và x=-3
c)B=5x^2-7y+6 tại x=-1/5;y=-3/7
a.\(x=0;y=-1\)
\(\Rightarrow2.0-\dfrac{-1\left(0^2-2\right)}{0.-1-1}=0-\dfrac{2}{-1}=2\)
b.\(x=2\)
\(\Rightarrow4.2^2-3\left|2\right|-2=16-6-2=8\)
\(x=-3\)
\(\Rightarrow4.\left(-3\right)^2-3\left|-3\right|-2=36-9-2=25\)
c.\(x=-\dfrac{1}{5};y=-\dfrac{3}{7}\)
\(\Rightarrow5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6=5.\dfrac{1}{25}+3+6=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)
thay x=2 và biểu thức A ta đc
\(A=4.2^2-3.\left|2\right|-2=4.4-6-2=16-6-2=8\)
thay x=-3 biểu thức A ta đc
\(A=4.\left(-3\right)^2-3.\left|-3\right|-2=4.9-9-2=36-9-2=25\)
thay x=-1/5 ; y=-3/7 biểu thức B ta đc
\(B=5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6\)
\(B=5\cdot\dfrac{1}{25}+3+6\)
\(B=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)
thay x =0 , y= -1 và biểu thức ta đc
\(0-\dfrac{\left(-1\right)\left(0^2-2\right)}{0.\left(-1\right)+\left(-1\right)}=0-\dfrac{2}{-1}=0+2=2\)
Rút gọn rồi tính giá trị của biểu thức
a)M=(x^2+3xy-3x^3)+(2y^3-xy+3x^3)-y^3 tại x=5 và y=4
b) N= x^2(x+y)-y(x^2-y^2) tại x=-6 y=8
c)P=x^2+1/2x+1/16 biết x= 3/4
a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)
= x² + 3xy - 3x³ + 2y³ - xy + 3x³
= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³
= x² + 2xy + 2y³
Tại x = 5 và y = 4
M = 5² + 2.5.4 + 2.4³
= 25 + 40 + 2.64
= 65 + 128
= 193
b) N = x²(x + y) - y(x² - y²)
= x³ + x²y - x²y + y³
= x³ + (x²y - x²y) + y³
= x³ + y³
Tại x = -6 và y = 8
N = (-6)³ + 8³
= -216 + 512
= 296
c) P = x² + 1/2 x + 1/16
= (x + 1/2)²
Tại x = 3/4 ta có:
P = (3/4 + 1/2)² = (5/4)² = 25/16
Tính giá trị của biểu thức:
a) (y + 5)^2 - 6x(y + 5) + 9x^2 tại x = - 2 và y = 4
b) (x - y)^2 - 2(x - y)(x + y) + (x + y)^2 tại x = 2015 và y = - 5
Thực hiện phép nhân, rút gọn rồi tính gia trị của biểu thức:
a, x (x-y) + y (x+y) tại x= -6 và y = 8
b, x (x^2-y) - x^2 (x+y) +y (x^2-x) tại x=1/2 và y=100
a) \(=x^2-xy+xy+y^2=x^2+y^2\)tự thay rồi tính nha
b) \(=x^3-xy-x^3-x^2y+x^2y-xy=-2xy\) tự thay vào nha
a) x(x – y) + y (x + y) = x2 – xy +yx + y2= x2+ y2
với x = -6, y = 8 biểu thức có giá trị là (-6)2 + 82 = 36 + 64 = 100
b) x(x2 – y) – x2 (x + y) + y (x2– x) = x3 – xy – x3 – x2y + yx2 – yx= (2x-2y) – (x2 -2xy +y2) =2(x-y) – (x-y)2
Với x =1/2, y = -100 biểu thức có giá trị là -2 . 1/2. (-100) = 100.
\(x\left(x-y\right)+y\left(x+y\right)\)
\(=x^2-xy+xy+y^2\)
\(=x^2+y^2\)
Tại \(x=-6;y=8\)thì biểu thức có giá trị là:
\(\left(-6\right)^2+8^2=100\)
\(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)
\(=x^3-xy-x^3-x^2y+x^2y-xy\)
\(=-2xy\)
Tại \(x=\frac{1}{2};y=100\)
\(-2.\frac{1}{2}.100=-100\)
a).x(x-y)+y(x+y) tại x= -6 và y =8
b).x.(x^2-y)-x^2-x^2.(x+y)+y(x^2-x)
a )
Thay x = -6 và y = 8 vào phương trình , ta có :
-6.( -6 -8 ) + 8.(-6+8 )
=36 + 48 - 48 + 64
= 36 + 64
= 100
a) x ( x - y ) + y ( x + y )
= x2 - xy + xy + y2
= x2 + y2
Thay x = -6 và y = 8 , ta được :
( -6 )2 + 82 = 36 + 64 = 100
b) x ( x2 - y ) - x2 - x2 ( x + y ) + y ( x2 - x )
= x3 - xy - x2 - x3 - x2y + x2y - xy
= ( x3 - x3 ) - ( xy + xy ) - ( x2y - x2y ) - x2
= -2xy - x2
\(A=x\left(x-y\right)+y\left(x+y\right)\)
\(=x^2-xy+xy+y^2\)
\(=x^2+y^2\)
Thay x = -6; y = 8 vào ta đc
\(A=\left(-6\right)^2+8^2=100\)
Bài 3:
a) Tính giá trị của biểu thức tại P = x(x - y) + y(x - y) tại x = 5 và y = 4;
b) Tính giá trị của biểu thức tại Q = x(x2 - y) - x2(x + y) + y(x2 - x) tại x = 1/2 và y = -100;
a) \(P=x\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(x+y\right)=x^2-y^2=5^2-4^2=9\)
b) \(Q=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=0\)