Tìm giá trị nhỏ nhất của biểu thức
A=(x-1/5) tất cả mủ 2 +11/12
Các anh chị giúp em với ạ
cho biểu thức P = ( x/x+1 - 1/1-x + 1/1-x2): x-2/x2-1
a, tìm điều kiện xác định và rút gọn
b, tìm tất cả các giá trị nguyên của x để biểu thức P nhân giá trị nguyên, với x>2, tìm giá trị nhỏ nhất của P
giúp mình với ạ làm chi tiết giúp mình
Tìm giá trị của m để biểu thức A=m^2-m+1 đạt giá trị nhỏ nhất. tính giá trị nhỏ nhất đó
các anh chị ơi các anh chị giúp em nhé tí nữa là em đi học rồi nha
A= m2-m+1= m2-2m.1/2 +(1/2)2-(1/2)2 +1=(m-1/2)2 +5/4 lớn hơn hoặc = 5/4
do đó A nhỏ nhất khi bằng 5/4
=> (m-1/2)2+5/4 = 5/4
=>(m-1/2)2=0
=>m-1/2=0
=> m=1/2
nếu đúng thì k cho mình nka
biết rằng các số x,y thỏa mãn điều kiện x+y=1.Tìm giá trị nhỏ nhất của biểu thức C=x^2+y^2+xy
anh chị nào biết giúp em với ạ,em cảm ơn nhiềuu
\(x+y=1\Rightarrow x=1-y\)
\(C=x^2+y^2+xy=\left(1-y\right)^2+y^2+\left(1-y\right)y\)
\(=y^2-y+1\)\(=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)
=>minC=\(\dfrac{3}{4}\) \(\Leftrightarrow y=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{2}\)
Ta có :
\(x+y=1\Rightarrow\left(x+y\right)^2=1\)
\(\Leftrightarrow x^2+2xy+y^2=1\)
\(\Leftrightarrow x^2+xy+y^2=1-xy\ge1-\left(\dfrac{x+y}{2}\right)^2=1-\dfrac{1}{4}=\dfrac{3}{4}\)
Hay \(C \ge \dfrac{3}{4}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Cho biểu thức A = (\(\dfrac{1}{\sqrt{x}+2}\) + \(\dfrac{1}{\sqrt{x}-2}\)).\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b) Tìm tất cả các giá trị của x để B = 7/3 A đạt giá trị nguyên
Mọi người giúp em nhanh với ạ :smirk:
Lời giải:
ĐKXĐ: $x>0; x\neq 4$
\(A=\frac{\sqrt{x}-2+\sqrt{x}+2}{(\sqrt{x}+2)(\sqrt{x}-2)}.\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{2}{\sqrt{x}+2}\)
\(B=\frac{7}{3}A=\frac{14}{3(\sqrt{x}+2)}\)
Hiển nhiên $B>0$
Với $x>0; x\neq 4\Rightarrow 3(\sqrt{x}+2)\geq 6$
$\Rightarrow B=\frac{14}{3(\sqrt{x}+2)}\leq \frac{14}{6}<3$
Vậy $0< B< 3$. $B$ nguyên $\Leftrightarrow B\in\left\{1;2\right\}$
$\Leftrightarrow \frac{14}{3(\sqrt{x}+2)}\in\left\{1;2\right\}$
$\Leftrightarrow x\in\left\{\frac{64}{9}; \frac{1}{9}\right\}$ (tm)
Mọi người giúp em bài này với ạ . cần gấp lát nữa 5 rưỡi em đi học rồi ạ
bài 1 :Tìm giá trị nhỏ nhất của biểu thức :
a) A= x2 + 4x + 5
b) B= ( x+3 ) ( x-11 ) + 2016
c) C= x2 + 5x + 8
bài 2 : Tìm giá trị lớn nhất của biểu thức :
a) D= 5 - 8x - x2
b) E= x4 + x2 + 2
Mọi người giúp em với :(( em cảm ơn nhiều nhiều lắm ạ
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
Tìm giá trị nhỏ nhất của các biểu thức sau :
C=|x-1|+|x-5|
Tìm giá trị lớn nhất .....
a) C=3-|2x-5| b / D= 1 / 2|x-1|+3
Giúp mình với mình đang cần gấp cảm ơn ạ!
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
bài 1: tìm x
c) (3^x +1) + 4.3^3 = 567
Bài 2: tìm giá trị nhỏ nhất của biểu thức P= (x-2)^2 +11/5
giúp em với:((
c) `3^(x+1)+4.3^3=567`
`3^(x+1)+108 = 567`
`3^x . 3 = 459`
`3^x=153`
`3^x = 3^2 . 17`
`=>` Không có `x` thỏa mãn.
.
`P=(x-2)^2+11/5`
Vì `(x-2)^2 >=0 forall x `
`=> (x-2)^2 + 11/5 >= 11/5 forall x`
`<=> P >=11/5`
`=> P_(min)=11/5 <=> x-2=0 <=>x=2`
giúp mk vs ạ, mk cần gấp:
Bài 1:Tính giá trị lớn nhất, nhỏ nhất ( nếu có ) của các biểu thức sau:
a, A= (x-4)2+2
b, B=2+căn 2x2+1chia tất cả cho 3
c, 12-x2
Bài 2:Tìm các giá trị nguyên của biến x để:
A=8-x chia cho x-3 có giá trị nhỏ nhất
Tìm giá trị nhỏ nhất của biểu thức B = (x – 1)(x + 2)(x + 3)(x + 6)
giúp em với ạ ;-;
B=\(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)=\(\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
- Đặt t=\(x^2+5x-6\)
=>B=t(t+12)=t2+12t=(t2+12t+36)-36 =(t+6)2-36≥-36
- minB=-36 ⇔ t+6=0 ⇔\(x^2+5x-6+6=0\) ⇔\(x\left(x+5\right)=0\) ⇔x=0 hay x=-5.