B=\(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)=\(\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
- Đặt t=\(x^2+5x-6\)
=>B=t(t+12)=t2+12t=(t2+12t+36)-36 =(t+6)2-36≥-36
- minB=-36 ⇔ t+6=0 ⇔\(x^2+5x-6+6=0\) ⇔\(x\left(x+5\right)=0\) ⇔x=0 hay x=-5.