Cho phân thức \(P=\dfrac{x^2+y^2}{2x+3y+4}\) với giá trị nào của x,y thì P=0
Cho phân thức P = x 2 + y 2 2 x + 3 y + 4 Với giá trị nào của x và y thì P = 0?
Từ x 2 + y 2 = 0 khi và chỉ khi x = y = 0. Khi đó mẫu
2x + 3y + 4 = 2.0 + 3.0 + 4 = 4 ≠ 0.
Vậy P = 0 khi x = y = 0.
\(cho\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}\)tính giá trị biểu thức của A\(=\dfrac{-2x+y+5z}{2x-3y-6z}\)(với x,y,z\(\ne0\)và a+b+c=0)
\(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{-2\left(-4k\right)-7k+5.3k}{2.\left(-4k\right)-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-5k}=-\dfrac{16}{5}\)
cho \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}\)tính giá trị biểu thức\(A=\dfrac{-2x+y+5z}{2x-3x-6z}\)với x,y,z\(\ne\)0 và 2x-3y-6z\(\ne\)0
Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)
\(\Rightarrow x=-4k;y=-7k;z=3k\) (1)
Thay (1) vào A , ta được
\(A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{2\left(-4k\right)-3\left(-7k\right)-6.3k}\)
\(\Rightarrow A=\dfrac{8k+\left(-7k\right)+15k}{-8k+21k+\left(-18k\right)}\)
\(\Rightarrow A=\dfrac{k[8+\left(-7\right)+15]}{k[-8+21+\left(-18\right)]}\)
\(\Rightarrow A=\dfrac{16k}{-5k}\)
\(\Rightarrow A=\dfrac{16}{5}\)
Vậy \(A=\dfrac{16}{5}\)
cho x,y > 0 và 2x+y ≥ 7 tính giá trị nhỏ nhất của biểu thức
P = \(x^2-x+3y+\dfrac{9}{x}+\dfrac{1}{9}+9\)
Cho tỉ lệ thức \(\dfrac{x}{y}=\dfrac{2}{3}\). Tính giá trị của các biểu thức sau:
\(A=\dfrac{x+5y}{3x-2y}-\dfrac{2x-3y}{4x+5y}\)
\(B=\dfrac{2x^2-xy+3y^2}{3x^2+2xy+y^2}\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
Cho 3y-x=6. Tính giá trị của biểu thức: \(A=\dfrac{x}{y-2}+\dfrac{2x-3y}{x-6}\)
Bài này quá dễ:vv
Ta có 3y-x=6
=> \(\left\{{}\begin{matrix}3y=6+x\\x=3y-6\end{matrix}\right.\)
Thay vào A ta có: \(A=\dfrac{x}{y-2}+\dfrac{2x-3y}{x-6}=\dfrac{3y-6}{y-2}+\dfrac{2x-6-x}{x-6}=\dfrac{3\left(y-2\right)}{y-2}+\dfrac{x-6}{x-6}=3+1=4\)Vậy khi 3y-x=6 thì A=4
Cho biểu thức: A = \(\dfrac{x+2}{2x-4}+\dfrac{x-2}{2x+4}+\dfrac{8}{x^2-4}\)
a) Với giá trị nào của x thì biểu thức được xác định.
b) Rút gọn biểu thức A.
c) Tìm giá trị của x để biểu thức A có giá trị bằng -3.
\(a,ĐK:x\ne\pm2\\ b,A=\dfrac{x^2+4x+4+x^2-4x+4+16}{2\left(x-2\right)\left(x+2\right)}\\ A=\dfrac{2x^2+32}{2\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+16}{x^2-4}\\ c,A=-3\Leftrightarrow-3x^2+12=x^2+16\\ \Leftrightarrow4x^2=-4\Leftrightarrow x\in\varnothing\)
cho x, y là 2 số thỏa mãn đồng thời x>=0, y>=0
2x+3y<=6 và 2x+y<=4.
tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức K= x2- 2x-y
Cho x−4 y−7 z3 .Tính giá trị biểu thức A −2x y 5z2x−3y−6z với x,y,z khác 0 và 2x 3y 6z khác 0