Tìm các điểm nằm trên trục hoành thuộc đồ thị hàm số y = 2x-1
Cho hàm số: y = 2x + m -1 a) Tìm m để đồ thị của hàm số đi qua điểm A (2;2) Vẽ đồ thị của hàm số với giá trị của m vừa tìm được b) Tìm m để đồ thị của hàm số y = 2x + m – 1 cắt đồ thị của hàm số y = x + 1 tại điểm nằm trên trục hoành.
Cho 2 hàm số bậc nhất y=-2x+k và y=3x-k+4. Với giá trị nào của k thì: a) Đồ thị của các hàm số trên cắt nhau tại một điểm nằm trên trục tung. b) Đồ thị của các hàm số trên cắt nhau tại một điểm nằm trên trục hoành
Tọa độ giao điểm của \(y=-2x+k\) và trục hoành: \(y=0\Rightarrow x=\dfrac{k}{2}\)
Tọa độ giao điểm \(y=-2x+k\) với trục tung: \(x=0\Rightarrow y=k\)
Tọa độ giao điểm của \(y=3x-k+4\) với trục hoành: \(y=0\Rightarrow x=\dfrac{k-4}{3}\)
Tọa độ giao điểm của \(y=3x-k+4\) với trục tung: \(x=0\Rightarrow y=-k+4\)
a. Đồ thị các hàm cắt nhau tại 1 điểm trên trục tung khi:
\(k=-k+4\Rightarrow x=2\)
b. Đồ thị các hàm cắt nhau tại 1 điểm trên trục hoành khi:
\(\dfrac{k}{2}=\dfrac{k-4}{3}\Rightarrow k=-8\)
Cho điểm A( 2;-1) thuộc đồ thị hàm số y = ax.
a) Xác định a.
b) Tìm điểm B có hoành độ là 2 và điểm C có tung độ bằng 5 thuộc đồ thị hàm số y = ax.
c) Vẽ đồ thị hàm số y =ax vừa tìm được và đồ thị hàm số y = 2x trên cùng một hệ trục tọa
độ Oxy.
d) Chứng minh 3 điểm M(-3; 1,5); N (1; -0,5) và O thẳng hàng.
LẸ GIÙM MÌNH NHA
a: Thay x=2 và y=-1 vào y=ax, ta được:
2a=-1
hay a=-1/2
Cho hàm số: y = 2x + m -1
a) Tìm m để đồ thị của hàm số đi qua điểm A (2;2)
Vẽ đồ thị của hàm số với giá trị của m vừa tìm được
b) Tìm m để đồ thị của hàm số y = 2x + m – 1 cắt đồ thị của hàm số y = x + 1 tại điểm nằm trên trục hoành.
a, Hàm số y = 2x + m - 1 đi qua điểm A(2;2) nên suy ra x = 2; y =2
Thay vào hàm số, ta có: 2 = 2.2 + m - 1 <=> 2 = 3 + m <=> m= -1
=> hàm số: y = 2x - 2
đồ thị: xác định 2 điểm ( 0 ; -2 ) và ( 1; 0). vẽ đường thẳng đi qua 2 điểm này được đồ thị hàm số cần vẽ.
b, Vì đồ thị của hàm số y = 2x + m-1 cắt đồ thị hàm số y = x+1 tại một điểm nằm trên trục hoành nên m-1 = 1 <=> m = 2
a, Hàm số y = 2x + m - 1 đi qua điểm A(2;2) nên suy ra x = 2; y =2
Thay vào hàm số, ta có: 2 = 2.2 + m - 1 <=> 2 = 3 + m <=> m= -1
=> hàm số: y = 2x - 2
đồ thị: xác định 2 điểm ( 0 ; -2 ) và ( 1; 0). vẽ đường thẳng đi qua 2 điểm này được đồ thị hàm số cần vẽ.
b, Vì đồ thị của hàm số y = 2x + m-1 cắt đồ thị hàm số y = x+1 tại một điểm nằm trên trục hoành nên m-1 = 1 <=> m = 2
chúc bn hok tốt @_@
Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả.
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1).
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2.
Giao điểm của hai đường tiệm cận là I(1; 2).
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)²
m = 1/(x - 1)²
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là
m' = dy/dx = -1/(x - 1)²
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là
mm' = -1
-1/(x - 1)^4 = -1
(x - 1)^4 = 1
(x - 1)² = 1
x - 1 = ±1
x = 0 hay x = 2
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)
Cho hàm số y = (m-2)x + m + 3
1. Tìm điều kiện của m để hàm số luôn nghịch biến
2. Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3
3. Tìm m để đồ thị hàm số trên và các đồ thị hàm số y= -x+2; y = 2x-1 đồng quy
1. hàm số nghịch biến khi
\(a< 0\\ \Leftrightarrow m-2< 0\\ \Leftrightarrow m< 2\)
2. \(y=\left(m-2\right)x+m+3\cap Ox,tại,x=3\)
\(\Rightarrow y=0\)
Có: \(0=\left(m-2\right)3+m+3\\ \Leftrightarrow0=4m-4\\ \Leftrightarrow m=\dfrac{3}{4}\)
3. pt hoành độ giao điểm của
\(y=-x+2,và,y=2x-1\) là
\(-x+2=2x-1\\ \Leftrightarrow3x=3\Leftrightarrow x=1\Rightarrow y=1\)
A(1,1)
3 đt đồng quy \(\Rightarrow A\in y=\left(m-2\right)x+m+3\\ \Rightarrow1=\left(m-2\right)1+m+3\\ \Leftrightarrow2m=0\\ \Leftrightarrow m=0\)
Tìm m để đồ thị hai hàm số y=2x+m-1 và y=x+1 cắt nhau tại 1 điểm nằm trên : a.trục tung b,trục hoành
Tìm các điểm nằm trên trục hoành thuộc đô thị hàm số y = 2x -1
Huhu giúp mk nha mk cần lắm mk tick hết nha
+Vì điểm nằm trên trục hoành có tung độ bằng 0 => y = 0
+ A( x; 0) thuộc đồ thị hàm số y = 2x - 1
<=> 2x - 1 =0
<=> 2x = 1
<=> x = \(\frac{1}{2}\)
Vậy A (\(\frac{1}{2}\); 0) nằm trên trục hoành thuộc đồ thị hàm số trên
(Không chắc lắm :<)
Cho đồ thị hàm số: y = (2m - 1)x + m - 2 (1). Tìm m để:
a) Đồ thị hàm số (1) cắt đường thẳng 2x - y = 3 tại một điểm trên trục hoành.
b) Tìm m đề đồ thị hàm số (1) cắt đườg thẳng y = x + 3 tại 1 điểm trên trục hoành.
a: Thay x=3/2 và y=0 vào (1), ta được:
\(3m-\dfrac{3}{2}+m-2=0\)
=>4m=7/2
hay m=7/8
Cho hàm số: y = (m-2)x + m + 3
a) Tìm điều kiện của m để hàm số luôn nghịch biến
b) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3
c) Tìm m để đồ thị của hàm số trên và đồ thị của các hàm số y = -x + 2: y = 2x - 1 đồng quy
a: Để hàm số nghịch biến thì m-2<0
hay m<2
b: Thay x=3 và y=0 vào hàm số, ta được:
\(3m-6+m+3=0\)
hay \(m=\dfrac{3}{4}\)
Tìm b biết đồ thị hàm số y = 2x + b cắt đường thẳng y = 3x - 2 tại một điểm nằm trên trục hoành.