Chứng minh a^4+b^4+c^4+d^4 lớn hơn hoặc bằng 4abcd
Cho a^4 + b^4 + c^4 + d^4 = 4abcd .Chứng minh a = b = c = d
Chứng minh với mọi a,b,c,d ta luôn có \(a^4+b^4+c^4+d^4\) ≥ 4abcd
Ta có:\(a^4;b^4;c^4;d^4\ge0;\forall a;b;c;d\)
Áp dụng BĐT AM-GM, ta có:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}\)
\(a^4+b^4+c^4+d^4\ge4abcd\) ( đfcm )
chứng minh 4 + d^2+ a^2 + b^2 + c^2 lớn hơn hoặc bằng 2(a + b + c + d)
Trả lời
a2 + b2 + c2 + d2 + 4 - 2a - 2b - 2c =0
a2 - 2a.1 + 1 + b2 - 2b.1 + 1 + c2 - 2c.1 + 12 + d2 - 2d.1 + 1 = 0
=> ( a - 1 )2 + ( b - 1 )2 + ( c - 1 )2 + ( d - 1 )2 = 0
Xong rồi bạn sử dụng bất phương trình để giải nhé
study well
Chứng minh rằng:
\(a^4\)+\(b^4\)+\(c^4\)+\(d^4\)\(\ge\)2(\(a^2b^2\)+\(c^2d^2\))\(\ge\)4abcd
CHO a+b+c=3 CHỨNG MINH a^4+b^4+c^4 lớn hơn hoặc bằng 3
MONG CÁC BẠN GIÚP
1Cho x,y >1 . Chứng minh : x2/(y-1) + y2/ (x-1) lớn hơn hoặc bằng 8
2 Cho a,b,c,d >=0 . Chứng minh : (a+b)(a+b+c)(a+b+c+d) / abcd lớn hơn hoặc bằng 64
3 Cho a,b,c >= 0 . Chứng minh : (a+b+c)(ab+bc+ac) lớn hơn hoặc bằng 8(a+b)(b+c)(c+a) / 9
4 Cho a,b,c >=0 và a+b+c =1 . Chứng minh : bc/√(a+bc) + ac/√(b+ac) + ab/√(c+ab) bé hơn hoặc bằng 1/2
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
Cho \(a^4+b^4+c^4+d^4=4abcd\) và a, b, c, d > 0 . Chứng minh: a = b = c = d
Với a,b,c,d >0\(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow a^4+b^4+c^4+d^4-4abcd=0\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(c^4-2c^2d^2+d^4\right)+\left(2a^2b^2+2c^2d^2-4abcd\right)=0\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2-2\left(a^2b^2-2abcd+c^2d^2\right)=0\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2-2\left(ab-cd\right)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(a^2-b^2\right)^2\ge0\forall a,b\\\left(c^2-d^2\right)^2\ge0\forall c,d\\\left(ab-cd\right)^2\ge0\forall a,b,c,d\end{matrix}\right.\)
Do đó: \(\left\{{}\begin{matrix}a^2-b^2=0\\c^2-d^2=0\\ab-cd=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\\ab=cd\end{matrix}\right.\Leftrightarrow a=b=c=d\left(\text{đ}pcm\right)\)
Chứng minh bất đẳng thức:
a) a^2 + b^2 + c^2 + \(\frac{3}{4}\)lớn hơn hoặc bằng - a - b - c
b) a^2 + b^2 + 4 lớn hơn hoặc bằng ab + 2(a+ b)
\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)
\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)
Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
b ) chuyển vế tương tự
Chứng minh rằng:
a^4 + b^4 + c^4 +d^4\(\ge\)4abcd
Áp dụng BĐT Cô-si ta có :
\(a^4+b^4\ge2a^2b^2\)
\(c^4+d^4\ge2c^2d^2\)
\(\Rightarrow a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\)
Mà \(2a^2b^2+2c^2d^2\ge2\sqrt{2ab.2cd}=4abcd\)
\(\Rightarrow a^4+b^4+c^4+d^4\ge4abcd\)