Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dia fic
Xem chi tiết
Hải Anh
27 tháng 12 2020 lúc 9:59

c=c.1 thay 1 bằng a+b+c xong cô si

 

Sherry
Xem chi tiết
tống thị quỳnh
23 tháng 2 2018 lúc 20:31

Xin lỗi xíu nha cái chỗ suy ra 2ab+2bc+2ac >/= 0 bị đánh lộn dấu đổi lại thành ab=bc+ca</=0 hộ nhé

tống thị quỳnh
18 tháng 4 2017 lúc 20:58

em dùng tính chất tổng quát này nè \(x^2\ge0\)với mọi x

như vậy ta có a+b+c=0\(\Rightarrow\left(a+b+c\right)^2=0\)\(\Leftrightarrow a^{2^{ }}+b^2+c^2+2ab+2bc+2ca=0\)mà ta luôn có \(a^2\ge0\)với mọi a;\(b^2\ge0\)với mọi b;\(c^2\ge0\)nên suy ra \(a^2+b^2+c^2\ge0\forall a,b,c\)mà \(a^2+b^2+c^2+2ab+2bc+2ca=0\Rightarrow2ab+2bc+2ca\ge0\)\(\Rightarrow\)ab+bc+ca\(\ge\)0.dấu bằng xảy ra khi và chỉ khi a=b=c=0

Trần Lan Bảo Nhi
22 tháng 4 2018 lúc 20:22

a+b+c=0\Rightarrow (a+b+c)2=0(a+b+c)2=0
\Rightarrow a2+b2+c2+2(ab+bc+ca)=0a2+b2+c2+2(ab+bc+ca)=0
\Rightarrow 2(ab+bc+ca)=−(a2+b2+c2)2(ab+bc+ca)=−(a2+b2+c2).
Mà a2+b2+c2a2+b2+c2\geq 0\Rightarrow −(a2+b2+c2)−(a2+b2+c2)\leq 0.
Do đó: 2(ab+bc+ca)2(ab+bc+ca)\leq 0
\Rightarrow ab+bc+caab+bc+ca\leq 0.

#𝒌𝒂𝒎𝒊ㅤ♪
Xem chi tiết
Son Goku
11 tháng 11 2018 lúc 20:50

Ta có: a + b + c = 0.

=> a = - b - c

b = -a - c

c = - a- b.

Nên ta có:

ab + bc + ca = (-b-c)b + (-a-c)c + (-a-b)a

= -b^2 - bc - ca  -c^2 - a^2 - ab

= -( a^2 + b^2 + c^2)- (ab + bc + ca)

=> 2(ab + bc + ca) = -(a^2 + b^2 +c^2)

Mà -(a^2 + b^2 + c^2) bé hơn hoặc bằng 0 (do a^2 + b^2 + c^2 lớn hơn hoặc bằng 0)

=> 2(ab + bc + ca ) bé hơn hoặc bằng 0.

=> ab + bc + ca bé hơn hoặc bằng 0.

Vậy ab + bc + ca bé hơn hoặc bằng 0.

zZz Cool Kid_new zZz
2 tháng 3 2019 lúc 17:46

Ta có:

\(\Rightarrow a\left(a+b+c\right)=b\left(a+b+c\right)=c\left(a+b+c\right)=0\)

\(\Rightarrow a^2+ab+ac=ab+b^2+bc=ca+cb+c^2=0\)

\(\Rightarrow\left(ab+bc+ca\right)+\left(a^2+b^2+c^2\right)=0\)

Do \(a^2+b^2+c^2\ge0\Rightarrow ab+bc+ca\le0^{đpcm}\)

Trần Thanh Phương
23 tháng 2 2020 lúc 15:58

Áp dụng bđt Cauchy: \(3\cdot\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=0\)

\(\Rightarrow ab+bc+ca\le0\)

Khách vãng lai đã xóa
Kesbox Alex
Xem chi tiết
Nguyễn Xuân Tiến 24
5 tháng 11 2017 lúc 20:15

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)

hay \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)Ta có: \(a^2+b^2+c^2\ge0\) .Dấu "=" xảy ra \(\Leftrightarrow a=b=c=0\)

Suy ra \(ab+bc+ca=-\dfrac{a^2+b^2+c^2}{2}\le-\dfrac{0}{2}=0\)

Dấu "=" xảy ra \(\Leftrightarrow a^2=b^2=c^2=0\Leftrightarrow a=b=c=0\)

Nguyễn's Linh
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Big City Boy
Xem chi tiết
vũ thúy hằng
Xem chi tiết
Chip pk
17 tháng 10 2017 lúc 3:23

Từ ab/(a+b)=bc/(b+c). Nhân chéo suy ra a=c

Chứng minh tương tự suy ra  a=b=c

Thay hết thành a vào M tính ra M=1

Dương146
1 tháng 11 2023 lúc 20:41

Sos

Dương146
1 tháng 11 2023 lúc 20:41

Sos

Anh Tú Dương
Xem chi tiết
Ma Đức Minh
30 tháng 10 2018 lúc 20:28

Ta cần chứng minh

\(a+b+c\ge ab+bc+ca\)

do \(x^2+y^2+z^2\ge xy+yz+zx\)

đặt \(a=\dfrac{2y}{x+z};b=\dfrac{2z}{y+x};c=\dfrac{2x}{z+y}\)

\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{x}{y+z}\ge2\left(\dfrac{xy}{\left(x+z\right)\left(y+z\right)}+\dfrac{yz}{\left(x+z\right)\left(x+y\right)}+\dfrac{zx}{\left(x+y\right)\left(y+z\right)}\right)\)

\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\)

dấu ''='' khi \(a=b=c=1\) hoặc \(a=b=2,c=1\)