\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
hay \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)Ta có: \(a^2+b^2+c^2\ge0\) .Dấu "=" xảy ra \(\Leftrightarrow a=b=c=0\)
Suy ra \(ab+bc+ca=-\dfrac{a^2+b^2+c^2}{2}\le-\dfrac{0}{2}=0\)
Dấu "=" xảy ra \(\Leftrightarrow a^2=b^2=c^2=0\Leftrightarrow a=b=c=0\)