Cho hình thoi ABCD cạnh bằng a. câu nào sau đây sai
A. BA = AD B. AB+BC = 2a C. BC = DC D. BA,DC ngược hướng
Câu 18 : Cho hình bình hành ABDC. Đẳng thức nào sau đây đúng ? A. overline BA - overline BC + overline DC = overline CB B. overline BA - overline BC + overline DC = overline BC C. overline BA - overline BC + overline DC = overline AD D. overline BA - overline BC + overline DC = overline CA
ABDC là hình bình hành
=>\(\overrightarrow{AB}=\overrightarrow{CD};\overrightarrow{AC}=\overrightarrow{BD}\)
A: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{DC}+\overrightarrow{CA}=\overrightarrow{DA}\ne\overrightarrow{CB}\)
=>Loại
B: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}\)
\(=\overrightarrow{BA}+\overrightarrow{CB}+\overrightarrow{DC}\)
\(=\overrightarrow{CA}+\overrightarrow{DC}=\overrightarrow{DC}+\overrightarrow{CA}=\overrightarrow{DA}\)<>vecto BC
C: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{DA}< >\overrightarrow{AD}\)
=>Loại
D: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{DA}< >\overrightarrow{CA}\)
=>Loại
Do đó: Không có đáp án nào đúng
Câu 1: cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
A.\(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CB}\)
B. \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{BC}\)
C.\(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{AD}\)
D.\(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CA}\)
Câu 2: Cho 4 điểm A,B,C,D. Đẳng thức nào sau đây đúng?
A.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)
B.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{BC}\)
C.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AC}+\overrightarrow{BD}\)
D.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{DA}+\overrightarrow{BC}\)
Câu 3: cho ΔABC, vẽ bên ngoài tam giác các hình bình hành ABEF, ACPQ,BCMN. Xét các mệnh đề:
(I) \(\overrightarrow{NE}+\overrightarrow{FQ}=\overrightarrow{MP}\)
(II) \(\overrightarrow{EF}+\overrightarrow{QP}=\overrightarrow{-MN}\)
(III) \(\overrightarrow{AP}+\overrightarrow{BF}+\overrightarrow{CN}=\overrightarrow{AQ}+\overrightarrow{EB}+\overrightarrow{MC}\)
Mệnh đề đúng là:
A. Chỉ (I) B.Chỉ (III) C.(I) và (II) D.Chỉ (II)
Câu 1: A
$\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CA}+\overrightarrow{DC}=\overrightarrow{DA}=\overrightarrow{CB}$
Câu 2:
$\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{DB}$
$=\overrightarrow{DC}+\overrightarrow{CB}$
$\Rightarrow \overrightarrow{AB}-\overrightarrow{DC}=\overrightarrow{CB}+\overrightarrow{AD}$
$\Rightarrow \overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}$
Đáp án A.
Cho hình thoi ABCD có BC=5cm, khẳng định nào sau đây là đúng?
A. AB = 2cm B. AB = 3cm C. AB = 8cm D. DC = 5cm
1)Cho hình bình hành ABCD, xác định các vectơ DA+DC,AB+DA.
2)Cho 5 điểm A, B, C, D, E. Chứng minh rằng: AC-ED+CD+EC-BC = AB
3)Cho hình vuông ABCD, tâm O cạnh bằng a.
a) Xác định vecto BA+DA+AC, AB+CA+BC, AB+AC.
b) Tính độ dài vecto DA+DC, AB-BC
Cho hình thang vuông ABCD vuông tại A và B. Đáy nhỏ AD = a , BC = 3a , AB = 2a. I là trung điểm của AB . Tính BA + BC , DI + DC ????
Sao bài dễ vậy mà em không làm được?
BA+BC=2a+3a=5a.
Theo Pitago \(ID^2=AD^2+AI^2=2a^2\to ID=a\sqrt{2}.\) Mặt khác kẻ DH vuông góc với BC thì DHBA là hình chữ nhật nên DH=2a, BH=a. Suy ra CH=2a. Theo Pitago ta có \(DC^2=DH^2+HC^2=\left(2a\right)^2+\left(2a\right)^2=8a^2\to DC=2\sqrt{2}a.\)Vậy \(ID+DC=a\sqrt{2}+2\sqrt{2}a=3\sqrt{2}a\)
cho hình thoi ABCD có góc A=60 độ,cạnh a.Gọi O là giao điểm của AC và BD.Tính độ dài vecto AB + vecto AD...vecto BA - vecto BC....vecto OB- vecto DC
Cho hình chữ nhật ABCD:
a. AD song song với cạnh nào dưới đây:
a. BC b. DC c. AC d.BD
b. BC vuông goc với cạnh nào dưới đây:
a. BC b. AD c. CD và AB d. CA và AB
a) a.BC
b) c.AB và CD
cho hình thoi BEDF nội tiếp tam giác ABC(E thuộc AB, D thuộc AC, F thuộc BC) a) tính cạnh hình thoi bt AB=4cm, BC=6cm. Tổng quát AB=c;BC=a b) Cnr BD<2ac/a+c với AB=c, BC=a. c) tính AB, BC biết AD=m, DC=n, cạnh hình thoi=b
1/M+1/BD+1/CN>1/a+1b+1/c
cho hình thoi ABCD có góc BAD bằng 60 độ, cạnh là a, O là giao điểm 2 đường chéo.
Tính :
a, độ dài vecto AB + AD
b, độ dài vecto BA - BC
c, độ dài vecto OB - DC