Cho tam giác ABE vuông cân tại A. Tính BE theo m=AB
Cho tam giác ABC có BC=a. Dựng ra ngoài ABC các tam giác ABE vuông cân tại B và tam giác ACF vuông cân tại C.Gọi M là trung điểm EF. Kẻ MH vuông góc với BC tại H. Tính MH theo a |
cho tam giác ABC vuông tại A,AB=9cm; AC=12cm.Trên tia BC lấy D sao cho BD=BA.Kẻ đoạn thẳng D vuông với BC. Đoạn thẳng này cắt AC tại E, cắt AB tại K
a) tính BC?
b) cm tam giác ABE=tam giác DBE => BE là tia phân giác của góc ABC
c)AC song song DK
d)kẻ đoạn thẳng A vuông góc với BC tại H, đoạn thẳng này cắt BE tại M. CM tam giác AME cân
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng ( giúp mk vs mai mk nộp r)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
FB=EC
FC=EB
BC chung
DO đó: ΔFBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔBIC cân tại I
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,M,I thẳng hàng
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng
b) Xét ΔEBC vuông tại E và ΔFCB vuông tại F có
BC chung
\(\widehat{ECB}=\widehat{FBC}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔEBC=ΔFCB(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{EBC}=\widehat{FCB}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF(Cạnh huyền-góc nhọn)
Tam giác ABC cân tại A, kẻ BE vuông với AC tại E, CF vuông với AB tại F
a, So sánh BE và CF và tam giác ABE=tam giác ACF
b, BE cắt CF tại I. Chứng Minh EI=IF
Tam giác ABC cân tại A (A nhỏ 90 độ) có đường cao BE cắt đường cao BF tại H a)c/m tam giác ABE và tam giác ACF = nhau b)AH vuông BC c)gọi D là giao điểm của đường thẳng AB,BC c/m tam giác DEF cân
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔAFH vuông tại F và ΔAEH vuông tại E có
AH chung
AF=AE
Do đó: ΔAFH=ΔAEH
Suy ra: \(\widehat{FAH}=\widehat{EAH}\)
hay AH là tia phân giác của góc BAC
mà ΔABC cân tại A
nên AH là đường cao
Xét tg ABE vuông tại E và tg ACF vuông tại F, có:
AB=AC(tg ABC cân tại A)
góc E=góc F(=90 độ)
góc BAE chung.
=>tg ABE=tg ACF.
b, Xét tg AHF vuông tại F và ΔAEH vuông tại E có
AH chung.
AF=AE(2 cạnh tương ứng)
góc E=góc F.
=>tg AHF=tg AEH.
=>góc FAH=góc EAH.
=>AH là cạnh chung của 2 góc. Vậy AH là tia phân giác của góc BAC.
Cho tam giác ABC cân tại A trên AB lấy D trên AC lấy Éao cho BD=CE
a)c/m DE//BC
b)c/m tam giác ABE=tam giác ACD
c)c/m tam giác BID = tam giác CIE (BE giao CD tại I )
d)c/m AI là tia phân giác BAC
e)c/m AI vuông BC
a) Ta có : BD=CE (đề bài)
mà AB=AD+BD; AC=AE+CE; AB=AC (Δ ABC cân tại A)
⇒ AD=AE
⇒ Δ ADE là Δ cân tại A
⇒ Góc ADE = Góc AED
\(\Rightarrow\widehat{DAE}+\widehat{2ADE}=180^O\)
mà \(\widehat{BAC}+\widehat{2ABC}=180^O\) (Δ ABC cân tại A)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\) ở vị trí đồng vị
Tương tự ta CM \(\widehat{AED}=\widehat{ACB}\) cũng ở vị trí đồng vị
\(\Rightarrow DE//BC\)
b) Xét Δ ABE và Δ ACD ta có :
AB=AC (Δ ABC cân tại A)
Góc A chung
AD=AE (cmt)
⇒ Δ ABE = Δ ACD (cạnh, góc, cạnh)
c) Ta có DE song song BC (cmt)
mà Góc DBC = Góc ECA (Δ ABC cân tại A)
⇒ BDEC là hình thang cân
Xét Δ BID và Δ CIE ta có :
\(\widehat{BDC}=\widehat{DCE}\) (đồng vị)
BD=CE (đề bàI)
BE=CD (BDEC là hình thang cân)
⇒ Δ BID = Δ CIE (cạnh, góc, cạnh)
d) Ta có: AD=AE (cmt)
mà DI=IE (Δ BID = Δ CIE)
⇒ AI là đường trung trực của DE
mà Δ ADE cân tại A (cmt)
⇒ AI là tia phân giác góc BAC
e) Ta có : Δ ABC cân tại A (đề bài)
mà AI là tia phân giác góc BAC (cmt)
⇒ AI là đường cao
⇒ AI vuông góc BC.
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB
(E thuộc AC, F thuộc AB )
a/ Chứng minh: tam giác ABE = tam giác ACF .
b/ Gọi I là giao điểm của BE và CF. Chứng minh: tam giác BIC là tam giác cân.
c/ Gọi M là trung điểm của BC. Chứng minh: 3 điểm A, I, M thẳng hàng
Vẽ hình luôn cho mik nha, cảm ơn rất nhiều
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Ta có: ΔABE=ΔACF
nên BE=CF
Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
CF=BE
Do đó: ΔFBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
c: Ta có: AB=AC
nên A nằm trên đườg trung trực của BC(1)
ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng
Cho tam giác ABC vuông tại A có AB= 9cm. BC= 15cm. Trên cạnh BC lấy điểm D sao cho BD=BA. Qua D kẻ đường thẳng vuông góc với BC đường thẳng này cắt AC tại E và cắt AB tại K.
a/ Tính AC
b/ Chứng minh tam giác ABE= tam giác DBE
c/ Chứng minh BE là phân giác của góc ABC và chứng minh AC=DK
d/ Qua A kẻ đường thẳng vuông góc BC tại H, cắt BE tại M. Chứng minh tam giác AME cân
( bài trước em đánh sót) =))
a) Áp dụng định lí Pi - ta - go cho tam giác ABC vuông tại A có :
AB^2+AC^2 =BC^2hay AC^2=15^2-9^2=144 hay AC=12
b)Xét tam giác ABE và DBE có :
Góc A=góc B(=90 độ)
BA=BD(gt)
Chung cạnh BE
suy ra tam giác ABE= BDE (c.g.c)
c) Từ tam giác ABE=BDE(cm ở ý b) suy ra góc ABE = góc DBE (2 góc tương ứng )
Suy ra BE là tia phân giác cua góc ABC
Xét tam giác BDK và BAC có :
Chung góc B
BA=BD(gt)
góc D = góc A (=90 độ)
suy ra tam giác BDK=tam giác BAC (g.c.g)
suy ra AC=DK (2 cạnh tương ứng )
( Mình chỉ làm được ý a,b,c thôi , mình ngại vẽ hình . Nếu đúng kết bạn với mình nhé )
Cho Tâm giác ABC , có AB=AC , kẻ BE vuông góc AC tại E , CF vuông góc với AB tại F , BE cắt CF tại H . Chứng Minh : Tâm giác ABE=ACF
Tam giác HBC Cân tai H
\(a,\)Xét \(\Delta ABE\)và \(\Delta ACF\)có :
\(\widehat{AEB}=\widehat{ACF}\left(gt\right)\)
\(AB=AC\left(gt\right)\)
\(\widehat{A}\)chung
\(\Rightarrow\Delta AEB=\Delta ACF\left(g.c.g\right)\)
\(\Rightarrow\widehat{ABE}=\widehat{ACF}\)( Hai góc tương ứng )
\(b,\)Ta có : \(\widehat{ABC}=\widehat{ABE}+\widehat{EBC}\)
\(\widehat{ACB}=\widehat{ACF}+\widehat{FCB}\)
Mà \(\widehat{ABC}=\widehat{ACB};\)\(\widehat{ABE}=\widehat{ACF}\left(cmt\right)\)
\(\Rightarrow\widehat{EBC}=\widehat{FCB}\)
\(\Rightarrow\Delta HBC\)cân tại H