Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Na Trần

Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng ( giúp mk vs mai mk nộp r)

Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 14:10

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Xét ΔFBC vuông tại F và ΔECB vuông tại E có

FB=EC

FC=EB

BC chung

DO đó: ΔFBC=ΔECB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔBIC cân tại I

d: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Ta có: IB=IC

nên I nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,M,I thẳng hàng


Các câu hỏi tương tự
Đỗ Kim Anh
Xem chi tiết
Nguyễn Thanh Thảo
Xem chi tiết
Bang Do
Xem chi tiết
luong hong anh
Xem chi tiết
phạm thùy trang
Xem chi tiết
Xem chi tiết
Xem chi tiết
khổng tường vy
Xem chi tiết
baek huyn
Xem chi tiết