Cm:\(\dfrac{1+cos2a+sin2a}{1+sin2a-cos2a}=tana\)
rút gọn
\(\dfrac{sin2a+1}{cos2a}-\dfrac{1-sin2a}{sina-cosb}\)
Em cần gấp ạ
Chứng minh:
Tana= ( sina + sin2a)/ (1+cosa + cos2a
Em cảm ơn nhiều ạ
Giải:
\(VP=\frac{sina+sin2a}{1+cosa+cos2a}=\frac{sina+2sinacosa}{1+cosa+2cos^2a-1}=\frac{sina\left(1+2cosa\right)}{cosa\left(1+2cosa\right)}=\frac{sina}{cosa}=tana=VT\)
=> ĐPCM
Cho sina - cosa =1/5. Tính sin2a, cos2a
(Sina -cosa)^2 =1:25
<=> sin^2a +cos^2a -2sina.cosa =1:25
Ta có sin^2a+cos^2a = 1
<=> 1-2 sina.cosa =1:25
2sina.cosa =24:25
CT : sin2a= 2sina.cosa=24:25
Có sin^2 .2a + co^2.2a = 1
(24:25)^2 + cos^2.2a =1
Từ đây rút cos 2a = căn 1-(24:25)^2 =... bạn tự làm tiếp nha !
Rút gọn biểu thức:
B = (1+ tan2a).(1- sin2a) \(-\)(1+ cotg2a).(1- cos2a)
\(\left(1+tan^2a\right)\left(1-sin^2a\right)-\left(1+cot^2a\right)\left(1-cos^2a\right)\)
\(=\left(1+\dfrac{sin^2a}{cos^2a}\right).cos^2a-\left(1+\dfrac{cos^2a}{sin^2a}\right).sin^2a\)
\(=cos^2a+sin^2a-sin^2a-cos^2a=\)\(0\)
Vậy B=0
Tính sin2a, cos2a, tan2a biết
Cho \(\pi< \alpha< \dfrac{3\pi}{2}\) và sin a = \(\dfrac{-5}{13}\) . Tính cosa , sin2a , cos2a , và sin\(\dfrac{a}{2}\)
Lời giải:
$\sin ^2a+\cos ^2a=1$
$\cos ^2a=1-\sin ^2a=1-(\frac{-5}{13})^2=\frac{144}{169}$
Vì $\pi < a< \frac{3\pi}{2}$ nên $\cos a< 0$
Do đó: $\cos a=-\sqrt{\frac{144}{169}}=\frac{-12}{13}$
$\sin 2a=2\sin a\cos a=2.\frac{-5}{13}.\frac{-12}{13}=\frac{120}{169}$
$\cos 2a=\cos ^2a-\sin ^2a=2\cos ^2a-1=2.\frac{144}{169}-1=\frac{119}{169}$
$\cos a=\cos ^2\frac{a}{2}-\sin ^2\frac{a}{2}$
$=1-2\sin ^2\frac{a}{2}$
$\Leftrightarrow \frac{-12}{13}=1-2\sin ^2\frac{a}{2}$
$\Rightarrow \sin ^2\frac{a}{2}=\frac{25}{26}$
Vì $\pi < a< \frac{3\pi}{2}$ nên $\sin \frac{a}{2}>0$
$\Rightarrow \sin \frac{a}{2}=\frac{5}{\sqrt{26}}$
Cho cosa = 3/4 vào 270°<a<370° . Tính
A sina , tana , cota
B sin2a , cos2a , tan2a
B sin( a+ π\3 )
Don gian bieu thuc sau
a) A= \(\dfrac{1-cosa+cos2a}{sin2a-sina}\) b) B= \(\sqrt{\dfrac{1}{2}-\dfrac{1}{2}\sqrt{\dfrac{1}{2}+\dfrac{1}{2}cosa}}\) (0<a≤\(\pi\)).
c) C= \(\dfrac{cosa-cos3a+cos5a-cos7a}{sina+sin3a+sin5a+sin7a}\)
có A=\(\dfrac{1-cosa+2cos^2a-1}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)
Sử dụng định nghĩa tỉ số lượng giác của 1 góc nhọn để chứng minh rằng với góc nhọn a tùy ý ta có:
tan a=\(\dfrac{sina}{cosa}\) cot a=\(\dfrac{cosa}{sina}\) tan a . cot a =1 sin2a + cos2a= 1