Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 10 2019 lúc 4:31

a) Cách 1: Khai triển HĐT rút gọn được 3 x 2  + 6x + 7 = 0

Vì (3( x 2  + 2x + 1) + 4 < 0 với mọi x nên giải được  x ∈ ∅

Cách 2. Chuyển vế đưa về ( x   +   3 ) 3 =  ( x   - 1 ) 3  Û x + 3 = x - 1

Từ đó tìm được x ∈ ∅

b) Đặt  x 2  = t với t ≥ 0 ta được  t 2  + t - 2 = 0

Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)

Từ đó tìm được x = ± 1

c) Biến đổi được 

d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x{0; 2; 4}

Nii-chan
Xem chi tiết
Trà chanh chém gió
Xem chi tiết
Akai Haruma
24 tháng 8 2023 lúc 0:01

1. Đặt $x^2+x=a$ thì pt trở thành:

$a^2+4a=12$
$\Leftrightarrow a^2+4a-12=0$

$\Leftrightarrow  (a-2)(a+6)=0$

$\Leftrightarrow a-2=0$ hoặc $x+6=0$

$\Leftrightarrow x^2+x-2=0$ hoặc $x^2+x+6=0$

Dễ thấy $x^2+x+6=0$ vô nghiệm.

$\Rightarrow x^2+x-2=0$

$\Leftrightarrow (x-1)(x+2)=0$

$\Leftrightarrow x=1$ hoặc $x=-2$

Akai Haruma
24 tháng 8 2023 lúc 0:03

2.

$x(x-1)(x+1)(x+2)=24$
$\Leftrightarrow [x(x+1)][(x-1)(x+2)]=24$

$\Leftrightarrow (x^2+x)(x^2+x-2)=24$

$\Leftrightarrow a(a-2)=24$ (đặt $x^2+x=a$)

$\Leftrightarrow a^2-2a-24=0$

$\Leftrightarrow (a+4)(a-6)=0$

$\Leftrightarrow a+4=0$ hoặc $a-6=0$

$\Leftrightarrow x^2+x+4=0$ hoặc $x^2+x-6=0$

Nếu $x^2+x+4=0$

$\Leftrightarrow (x+\frac{1}{2})^2=\frac{1}{4}-4<0$ (vô lý - loại)

Nếu $x^2+x-6=0$

$\Leftrightarrow (x-2)(x+3)=0$

$\Leftrightarrow x-2=0$ hoặc $x+3=0$
$\Leftrightarrow x=2$ hoặc $x=-3$

Akai Haruma
24 tháng 8 2023 lúc 0:06

3.
$(x-7)(x-5)(x-4)(x-2)=72$

$\Leftrightarrow [(x-7)(x-2)][(x-5)(x-4)]=72$
$\Leftrightarrow (x^2-9x+14)(x^2-9x+20)=72$
$\Leftrightarrow a(a+6)=72$ (đặt $x^2-9x+14=a$)

$\Leftrightarrow a^2+6a-72=0$

$\Leftrightarrow (a-6)(a+12)=0$

$\Leftrightarrow a-6=0$ hoặc $a+12=0$

$\Leftrightarrow x^2-9x+8=0$ hoặc $x^2-9x+26=0$
$\Leftrightarrow x^2-9x+8=0$ (dễ thấy pt $x^2-9x+26=0$ vô nghiệm)

$\Leftrightarrow (x-1)(x-8)=0$

$\Leftrightarrow x-1=0$ hoặc $x-8=0$

$\Leftrightarrow x=1$ hoặc $x=8$

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 4 2019 lúc 11:37

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 8 2019 lúc 6:09

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 9 2017 lúc 13:26

Nhue
Xem chi tiết
Kiều Vũ Linh
7 tháng 3 2023 lúc 10:00

1. A

2. D

3. A

4. A

Nguyễn Lê Phước Thịnh
7 tháng 3 2023 lúc 10:01

4A

3A

2D

1D

DakiDaki
Xem chi tiết
Rin Huỳnh
18 tháng 2 2022 lúc 8:41

\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)

 

Nguyễn Lê Phước Thịnh
18 tháng 2 2022 lúc 9:29

d: \(\Leftrightarrow3x^2-6x-2x+4=0\)

=>(x-2)(3x-2)=0

=>x=2 hoặc x=2/3

e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)

=>x(x-3)(x+1)=0

hay \(x\in\left\{0;3;-1\right\}\)

f: \(\Leftrightarrow x^2-5x-2+x=0\)

\(\Leftrightarrow x^2-4x-2=0\)

\(\Leftrightarrow\left(x-2\right)^2=6\)

hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)

Đã Ẩn
Xem chi tiết
Trúc Giang
16 tháng 1 2021 lúc 17:46

a) \(x^2+2x=\left(x-2\right).3x\)

\(\Leftrightarrow x^2+2x=3x^2-6x\)

\(\Leftrightarrow x^2+2x-3x^2+6x=0\)

\(\Leftrightarrow-2x^2+8x=0\)

\(\Leftrightarrow-2x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy S = {0;4}

b) \(x^3+x^2-x-1=0\)

\(\Leftrightarrow x^2\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^2-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\mp1\end{matrix}\right.\)

Vậy: S = {-1; 1}

c) \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]=40\)

\(\Leftrightarrow\left(x^2+5x+x+5\right)\left(x^2+4x+2x+8\right)=40\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)

Đặt x2 + 6x + 5 = t

\(\Leftrightarrow t.\left(t+3\right)=40\)

\(\Leftrightarrow t^2+3t=40\)

\(\Leftrightarrow t^2+2.t.\dfrac{3}{2}+\dfrac{9}{4}=\dfrac{169}{4}\)

\(\Leftrightarrow\left(t+\dfrac{3}{2}\right)^2=\dfrac{169}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}t+\dfrac{3}{2}=\dfrac{13}{2}\\t+\dfrac{3}{2}=-\dfrac{13}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{13}{2}-\dfrac{3}{2}=\dfrac{10}{2}=5\\t=-\dfrac{13}{2}-\dfrac{3}{2}=-\dfrac{16}{2}=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x+5=5\\x^2+6x+5=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x=0\\x^2+6x+13=0\end{matrix}\right.\)

Mà: \(x^2+6x+13=x^2+2.x.3+9+4=\left(x+3\right)^2+4\ne0\)

=> x2 + 6x = 0

<=> x. (x + 6) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Vậy S = {0; -6}

 

 

Nguyễn Lê Phước Thịnh
16 tháng 1 2021 lúc 19:00

a) Ta có: \(x^2+2x=\left(x-2\right)\cdot3x\)

\(\Leftrightarrow x\left(x+2\right)-3x\left(x-2\right)=0\)

\(\Leftrightarrow x\left[\left(x+2\right)-3\left(x-2\right)\right]=0\)

\(\Leftrightarrow x\left(x+2-3x+6\right)=0\)

\(\Leftrightarrow x\left(-2x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-2x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\-2x=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy: S={0;4}

b) Ta có: \(x^3+x^2-x-1=0\)

\(\Leftrightarrow x^2\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(x-1\right)\cdot\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

Vậy: S={-1;1}

c) Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)

\(\Leftrightarrow\left(x+1\right)\left(x+5\right)\left(x+2\right)\left(x+4\right)-40=0\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)-40=0\)

\(\Leftrightarrow\left(x^2+6x\right)^2+13\left(x^2+6x\right)+40-40=0\)

\(\Leftrightarrow\left(x^2+6x\right)^2+13\left(x^2+6x\right)=0\)

\(\Leftrightarrow\left(x^2+6x\right)\left(x^2+6x+13\right)=0\)

\(\Leftrightarrow x\left(x+6\right)\left(x^2+6x+13\right)=0\)

mà \(x^2+6x+13>0\forall x\)

nên \(x\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Vậy: S={0;-6}

Tự Thị Trang
Xem chi tiết