giải hpt :
x+2y-3=0
{x(y + 2) + y = 6
Giải hpt : \(\left\{{}\begin{matrix}x^2+y^2-2y-6+2\sqrt{2y+3}=0\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+xy+x-y-2y^2=0\\x^2-y^2+x+y=6\end{matrix}\right.\)
GIẢI HPT
(1) \(\Leftrightarrow\left(x-y\right)\left(x+2y+1\right)=0\)
giải hpt sau
\(\left\{{}\begin{matrix}3x^2+6xy-x+3y=0\\4x-9y=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(3y+3\right)^2+y^2-2\left(3y+3\right)-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9y^2+18y+9+y^2-6y-6-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}10y^2+10y-20=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y^2+y-2=0\\x=3y+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(y+2\right)\left(y-1\right)=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\in\left\{-2;1\right\}\\x=3y+3\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-3;-2\right);\left(6;1\right)\right\}\)
a: \(\left\{{}\begin{matrix}3x^2+6xy-x+3y=0\\4x-9y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9y=4x-6\\3x^2+6xy-x+3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{9}x-\dfrac{2}{3}\\3x^2+6x\cdot\left(\dfrac{4}{9}x-\dfrac{2}{3}\right)-x+3\cdot\left(\dfrac{4}{9}x-\dfrac{2}{3}\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x^2+\dfrac{8}{3}x^2-4x-x+\dfrac{4}{3}x-2=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{17}{3}x^2-\dfrac{11}{3}x-2=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17x^2-11x-6=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x-1\right)\left(17x+6\right)=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}17x+6=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=\dfrac{4}{9}\cdot1-\dfrac{2}{3}=\dfrac{4}{9}-\dfrac{2}{3}=-\dfrac{2}{9}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{6}{17}\\y=\dfrac{4}{9}\cdot\dfrac{-6}{17}-\dfrac{2}{3}=\dfrac{-14}{17}\end{matrix}\right.\end{matrix}\right.\)
1.Giải hpt : a,\(\left\{{}\begin{matrix}\left(x+y+3\right)\sqrt{x-2y}+2y+4=0\\\left(x-y\right)\left(x^2+4\right)=y^2+1\end{matrix}\right.\)
Giải hpt \(\hept{\begin{cases}x^2+xy+x-y-2y^2=0\\x^2-y^2+x+y=6\end{cases}}\)
Help :((
hệ \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x+2y\right)+\left(x-y\right)=0\\x^2-y^2+x+y=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x+2y+1\right)=0\left(1\right)\\x^2-y^2+x+y=6\left(2\right)\end{cases}}\)
Th1: x=y
pt 2<=> 2x=6
<=> x=y=3
Th2: x+2y+1=0
<=> x=-1-2y
=> pt (2) <=> \(\left(-1-2y\right)^2-y^2-1-2y+y=6\)
\(\Leftrightarrow4y^2+4y+1-y^2-1-2y+y=6\)
\(\Leftrightarrow3y^2+3y-6=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)
KL:............................
Giải hpt:
x2 + 2y2 - 3xy - y - 1 = 0
x2 + y2 - y - 3 = 0
Giải HPT bằng phương pháp đặt ẩn phụ
\(\left\{{}\begin{matrix}\dfrac{6}{x+y}-\dfrac{3}{x-2y}=3\\\dfrac{1}{x+y}+\dfrac{7}{x-2y}=2\end{matrix}\right.\)
Đặt x+y=a; x-2y=b
=>6/a-3/b=3 và 1/a+7/b=2
=>a=5/3 và b=5
=>x+y=5/3 và x-2y=5
=>x=25/9; y=-10/9
Giải hpt:\(\hept{\begin{cases}x\left(x^2+y^2\right)+y\left(xy+12\right)=0\\x^2+4\left(2y^2-3\right)=0\end{cases}}\)
Giải hpt:
x2 - 3xy + 2y2= 0
3x + y = 6
\(x^2-3xy+2y^2=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\Rightarrow\left[{}\begin{matrix}x=y\\x=2y\end{matrix}\right.\)
Thay xuống dưới:
- Với \(x=y\Rightarrow3y+y=6\Rightarrow y=\frac{3}{2}\Rightarrow x=\frac{3}{2}\)
- Với \(x=2y\Rightarrow6y+y=6\Rightarrow y=\frac{6}{7}\Rightarrow x=\frac{12}{7}\)