giải pt\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)
giải pt
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)}\)=3x-1
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
giải pt :a,\(\left(2x+6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
Áp dụng nội suy niu tơn để giải pt sau
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{2}\right)}=3x-1\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
giải các PT sau :
a) \(\left|2x+3\right|-\left|x\right|+\left|x-1\right|=2x+4\)
b) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
d) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
e) \(\sqrt{4x+3}+\sqrt{2x+1}=6x+\sqrt{8x^2+10x+3}-16\)
f)\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Giải PT: \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right).\left(x^2-3x+5\right)}=4-2x\)
Giải pt
1, \(\sqrt[4]{5-x}+\sqrt[4]{x-1}=\sqrt{2}\)
2. \(\sqrt[3]{\left(2-x\right)^2}+\sqrt[3]{\left(7+x\right)^2}-\sqrt[3]{\left(7+x\right)\left(2-x\right)}=3\)
giải pt
\(\left(\sqrt{x+4}-\sqrt{1-x}\right)\left(1+\sqrt{\left(x+4\right)\left(1-x\right)}\right)=3\)
ĐKXĐ: \(-4\le x\le1\)
Đặt \(\sqrt{x+4}-\sqrt{1-x}=t\)
\(\Rightarrow t^2=5-2\sqrt{\left(x+4\right)\left(1-x\right)}\Rightarrow\sqrt{\left(x+4\right)\left(1-x\right)}=\frac{5-t^2}{2}\)
Pt trở thành:
\(t\left(1+\frac{5-t^2}{2}\right)=3\Leftrightarrow t\left(7-t^2\right)=6\)
\(\Leftrightarrow t^3-7t+6=0\Leftrightarrow\left(t+3\right)\left(t-1\right)\left(t-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}t=-3\\t=1\\t=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x+4}-\sqrt{1-x}=-3\\\sqrt{x+4}-\sqrt{1-x}=1\\\sqrt{x+4}-\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+4}+3=\sqrt{1-x}\left(vn\right)\\\sqrt{x+4}=1+\sqrt{1-x}\\\sqrt{x+4}=2+\sqrt{1-x}\end{matrix}\right.\) (1 vô nghiệm do \(VT\ge3;VP\le\sqrt{5}< 3\))
\(\Leftrightarrow\left[{}\begin{matrix}x+4=2-x+2\sqrt{1-x}\\x+4=5-x+4\sqrt{1-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{1-x}\left(x\ge-1\right)\\2x-1=4\sqrt{1-x}\left(x\ge\frac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=1-x\\4x^2-4x+1=16-16x\end{matrix}\right.\) \(\Leftrightarrow...\)
Giải pt, bất pt
a) \(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}=2x\right)\)
b) \(\left(x^2-3x+2\right)\left(x^2-12x+32\right)\le4x^2\)
c) \(2\sqrt{3x+7}-5\sqrt[3]{x-6}=4\)