Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Vũ
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
22 tháng 7 2021 lúc 16:07

mong mọi người giải giúp em vs gianroigianroi

Hùng Hoàng
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Lê Thu Trang
Xem chi tiết
Big City Boy
Xem chi tiết
Yến Chi
Xem chi tiết
Hùng Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 6 2020 lúc 19:39

ĐKXĐ: \(-4\le x\le1\)

Đặt \(\sqrt{x+4}-\sqrt{1-x}=t\)

\(\Rightarrow t^2=5-2\sqrt{\left(x+4\right)\left(1-x\right)}\Rightarrow\sqrt{\left(x+4\right)\left(1-x\right)}=\frac{5-t^2}{2}\)

Pt trở thành:

\(t\left(1+\frac{5-t^2}{2}\right)=3\Leftrightarrow t\left(7-t^2\right)=6\)

\(\Leftrightarrow t^3-7t+6=0\Leftrightarrow\left(t+3\right)\left(t-1\right)\left(t-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=-3\\t=1\\t=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x+4}-\sqrt{1-x}=-3\\\sqrt{x+4}-\sqrt{1-x}=1\\\sqrt{x+4}-\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+4}+3=\sqrt{1-x}\left(vn\right)\\\sqrt{x+4}=1+\sqrt{1-x}\\\sqrt{x+4}=2+\sqrt{1-x}\end{matrix}\right.\) (1 vô nghiệm do \(VT\ge3;VP\le\sqrt{5}< 3\))

\(\Leftrightarrow\left[{}\begin{matrix}x+4=2-x+2\sqrt{1-x}\\x+4=5-x+4\sqrt{1-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{1-x}\left(x\ge-1\right)\\2x-1=4\sqrt{1-x}\left(x\ge\frac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=1-x\\4x^2-4x+1=16-16x\end{matrix}\right.\) \(\Leftrightarrow...\)

Kimian Hajan Ruventaren
Xem chi tiết