Cho a,b,c,d,e >0CMR:
\(a+b+c+d+e\ge\sqrt{a}\left(\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e}\right)\)
Cho a,b,c,d,e là các số dương
chứng minh rằng \(a+b+c+d+e\ge\sqrt{a}\left(\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e}\right)\)
Căn là để làm màu,khử căn bằng cách bình phương
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c};\sqrt{d};\sqrt{e}\right)\rightarrow\left(x;y;z;t;v\right)\)
Khi đó ta cần chứng minh:
\(x^2+y^2+z^2+t^2+v^2\ge x\left(y+z+t+v\right)\)
\(\Leftrightarrow4x^2+4y^2+4z^2+4t^2+4v^2-4xy-4xz-4xt-4xv\ge0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4xz+4z^2\right)+\left(x^2-4xt+4t^2\right)+\left(x^2-4xv+4v^2\right)\ge0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2z\right)^2+\left(x-2t\right)^2+\left(x-2v\right)^2\ge0\)
Dấu "=" xảy ra tại x=2y=2z=2t=2v
Với a,c,b,d,e,f là số dương
CMR:
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{e^2+f^2}\ge\sqrt{\left(a+c+e\right)^2+\left(b+d+f\right)^2}\)
Với a,c,b,d,e,f là số dương
CMR:
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{e^2+f^2}\ge\sqrt{\left(a+c+e\right)^2+\left(b+d+f\right)^2}\)
\(Bdt\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow ac+bd\le\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\left(1\right)\)
Nếu \(ac+bd< 0\). Bđt đúngNếu \(ac+bd\ge0\).Thì (1) tương đương:\(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2c^2+b^2d^2+2abcd\le a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(\Leftrightarrow a^2d^2+b^2c^2-2abcd\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)(luôn đúng)
Vậy bài toán được chứng minh.
Cho a,b,c,d,e,f là các số dương. CMR:
\(\sqrt{\left(a+b+c\right)^2+\left(d+e+f\right)^2}\le\sqrt{a^2+d^2}+\sqrt{b^2+e^2}+\sqrt{c^2+f^2}\)
Mincopxki
\(\sqrt{a^2+d^2}+\sqrt{b^2+e^2}+\sqrt{c^2+f^2}\ge\sqrt{\left(a+b\right)^2+\left(d+e\right)^2}+\sqrt{c^2+f^2}\ge\sqrt{\left(a+b+c\right)^2+\left(d+e+f\right)^2}\)
Bt hè
a)Cho a,b,c,d,e là các số thực. Chứng minh rằng:
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
b) cho biểu thức \(P=\frac{yz\sqrt{x-1}+zx\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)Tìm giá trị lớn nhất của P
làm xong ấn hủy :(( chán
\(bđt\Leftrightarrow2a^2+2b^2+2c^2+2d^2+2e^2-2ab-2ac-2ad-2ae\ge0\)
\(\Leftrightarrow a^2-2a\left(d+e\right)+\left(d+e\right)^2+b^2-2bc+c^2+a^2-2a\left(b+c\right)+\left(b+c\right)^2+d^2-2de+e^2\ge0\)
\(\Leftrightarrow\left(a-d-e\right)^2+\left(b-c\right)^2+\left(a-b-c\right)^2+\left(d-e\right)^2\ge0\)*đúng*
Vậy ta có điều phải chứng minh
cách khác câu a)
ta xét P=a2-a(b+c+d+e)+b2+c2+d2+e2 là một tam thức bậc 2 theo biến a ta có \(\Delta=\left(b+d+c+e\right)^2-4\left(b^2+d^2+c^2+e^2\right)\)
theo bđt cauchy-schwarz ta có \(\left(1+1+1+1\right)\left(b^2+c^2+d^2+e^2\right)\ge\left(b+d+c+e\right)^2\)
do đó \(\Delta\le0\), theo định lí về dấu của tam thức bậc hai ta được
a2-a(b+c+d+e) +b2+c2+d2+e2>=0
bài toán được chứng minh
\(P=\frac{yz\sqrt{x-1}+zx\sqrt{y-2}+xy\sqrt{z-3}}{xyz}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)
Đặt \(t=\sqrt{x-1}\)lúc đó \(A=\frac{\sqrt{x-1}}{x}=\frac{t}{t^2+1}\Leftrightarrow At^2-t+A=0\)
\(\Delta=1^2-4A^2\ge0\Rightarrow A\le\frac{1}{2}\)
Tương tự, ta có: \(\frac{\sqrt{y-2}}{y}\le\frac{\sqrt{2}}{4};\frac{\sqrt{z-3}}{z}\le\frac{\sqrt{3}}{6}\)
Dấu = xảy ra khi \(x=2;y=\sqrt{2};z=\sqrt{3}\), \(P_{min}=\frac{6+3\sqrt{2}+2\sqrt{3}}{12}\)
6. Bất đẳng thức
Bài 9: Cho a, b, c, d, e \(\in\) R. Chứng minh các bất đẳng thức sau:
a. \(a^2+b^2+c^2\ge ab+bc+ca\)
b. \(a^2+b^2+1\ge ab+a+b\)
c. \(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
d. \(a^2+b^2+c^2\ge2\left(ab+bc-ca\right)\)
e. \(a^4+b^4+c^2+1\ge2a\left(ab^2-a+c+1\right)\)
f. \(\frac{a^2}{4}+b^2+c^2\ge ab-ac+2bc\)
g. \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
h. \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
i. \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\) với a, b, c >0
k. \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) với a, b, c \(\ge\)0
a.
\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(luôn đúng)
b. Áp dụng BĐT \(x^2+y^2\ge2xy\)
\(a^2+b^2\ge2ab,a^2+1\ge2a,b^2+1\ge2b\)\(\Rightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\Leftrightarrow a^2+b^2+1\ge ab+a+b\)
c. Tương tự câu b
Áp dụng BĐT Cô si ta có
i. \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}},\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ca}}\)
\(\Rightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
k. Tương tự câu i
b1 cho a,b,c ko âm cmr
a)a+b+c\(\ge\)\(\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)\)
b)a+b+c+d+e\(\ge\)\(\sqrt{a}\left(\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e}\right)\)
c)a+b+1\(\ge\)\(\sqrt{ab}+\sqrt{a}+\sqrt{b}\)
d)a+\(\sqrt{2a}+2\)>0
b2 sử dụng cô-si hoặc bu-nhia-cốp-xki
cho a,b,c thoả mãn a+b+c=1 cmr
a)\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le3,5\)
b)\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
b3CMR
a)\(19>1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}>18\)
b)
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}< 1\)
bạn nào giải giúp mk vs 3 hm nx mk phải nộp r bạn nào giải dc con nào thì giải nhé thanks
dùng AM-GM nha
a) cm \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)với \(c>0;a,b\ge c\)
b) \(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\)với a,b,c,d>0
c) cho a,b,c,d>0
cm \(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{a+c+d}}+\sqrt{\frac{c}{a+b+d}}+\sqrt{\frac{d}{a+b+c}}>2\)
câu 1. đơn giản biểu thức
a. A = \(\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}\)
b. B = \(\left(\sqrt{3-\sqrt{7}}\right)^6\)
c. C = \(\left(\sqrt{\sqrt{2}-\sqrt{3}}\right)^2\)
d. D = \(\sqrt{3+2\sqrt{2}}\)
e. E = \(\sqrt{8-2\sqrt{15}}\)
d, \(D=\sqrt{3+2\sqrt{2}}=\sqrt{2+2.\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
e,\(E=\sqrt{8-2\sqrt{15}}=\sqrt{5-2.\sqrt{5}.\sqrt{3}+3}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{5}-\sqrt{3}\)
a,ĐKXĐ: \(\forall x\in R\)
\(\Rightarrow A=\left|a+3\right|+\left|a-3\right|\)\(=\left|-a-3\right|+\left|a-3\right|\)
Vì \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) *Dấu ''='' xảy ra\(\Leftrightarrow A.B\ge0\) *
\(\Rightarrow A\ge\left|-a-3+a-3\right|=6\)
Dấu ''='' xảy ra \(\Leftrightarrow\left(-a-3\right)\left(a-3\right)\ge0\Leftrightarrow\left(a+3\right)\left(a-3\right)\ge0\)
\(\Leftrightarrow-3\le a\le3\)
Vậy ...