Cho x+2y=1.Tính GTNN của A=x^2+2y^2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho x +2y = 1 tính Gtnn A =x^2 + 2y^2
Ai kết bạn với mink mink k cho hứa đó please
mình kết bn rùi đó k cho mình đi hihi
cho x +2y = 1 tính Gtnn A =x^2 + 2y^2
A = x2+2y2
= (x2+2x+1) + 2(y2+2y+1) -2x-4y-3
= (x+1)2 + 2(y+1)2 - 2(x+2y) -3
= (x+1)2 + 2(y+1)2 -5
\(\Rightarrow A_{min}=\)\(-5\Leftrightarrow\orbr{\begin{cases}x=-1\\y=-1\end{cases}}\)
10 : a) Cho x+2y=1. Tìm GTNN của A=x^2+2y^2
b) Cho 4x-3y=7. Tìm GTNN của B=2x^2+5y^2
c) Cho a+b=1.Tìm GTNN của C=a^3+b^3
d) Cho xy=1. Tìm GTNN của D=\(\left|x+y\right|\)
a. \(x+2y=1\Rightarrow x=1-2y\). Thay vào ta được:
\(A=\left(1-2y\right)^2+2y^2=1-4y+4y^2+2y^2=6y^2-4y+1=6\left(y^2-\dfrac{2}{3}y+\dfrac{1}{3}\right)=6\left(y^2-2.y.\dfrac{1}{3}+\dfrac{1}{9}\right)+\dfrac{4}{3}=\left(y-\dfrac{1}{3}\right)^2+\dfrac{4}{3}\ge\dfrac{4}{3}\)\(\Rightarrow Min_A=\dfrac{4}{3}\Leftrightarrow x=y=\dfrac{1}{3}\)
b. \(4x-3y=7\Rightarrow x=\dfrac{7+3y}{4}\) Thay vào ta được:
\(2.\left(\dfrac{7+3y}{4}\right)^2+5.y^2=2.\left(\dfrac{49+42y+9y^2}{16}\right)+5y^2=\dfrac{98+84y+18y^2+80y^2}{16}=\dfrac{98y^2+84y+98}{16}=\dfrac{98\left(y^2+\dfrac{6}{7}y+\dfrac{9}{49}\right)+80}{16}=\dfrac{98\left(y+\dfrac{3}{7}\right)^2+80}{16}\ge5\)\(\Rightarrow Min_B=5\Leftrightarrow x=\dfrac{10}{7};y=-\dfrac{3}{7}\)
c. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a^3 + b^3. - Bất đẳng thức và cực trị - Diễn đàn Toán học
cho x,y >0 thoả mãn x+2y>=5 tìm GTNN của x^2 +2y^2+1/x+24/y
Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Bài 1: Cho x+2y=1. Tìm GTNN của A=x2+2y2
Bài 2: Cho xy=1. Tìm GTNN của B=|x+y|
Bài 3: Tìm GTNN của
a) A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b) B=\(\frac{x^2-4x+1}{x^2}\)
Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b2 )( x2 + Y2 )
Ở đây hệ số của x là 1 nên a là 1.
Ta có: ( x + 2y )2 <= ( 12 + (căn2)2 ) ( x2 + ( căn 2 )2y2 )
=> 1 <= 3 ( x2 + 2y2 )
=> x2 + 2y2 >= 1/3
Cho x+2y=1. Tìm GTNN của B=x2+2y2
Nguồn : diendantoanhoc.net
Áp dụng BĐT Cauchy Schwarz có :
\(\left(x^2+2y^2\right)\left(1+2\right)\ge\left(x+2y\right)^2=1\)
\(\Rightarrow x^2+2y^2\ge\frac{1}{3}\)
Vậy ...
cho x+ 2y = 1.Tìm gtnn của P = x2 + 2y2
Ta có: x + 2y = 1 <=> x = 1 - 2y.
Thay vào P ta có:
P = (1 - 2y)2 + 2y2 = (1- 4y +4y2) + 2y2 = 6y2 - 4y+1 = 6(y2 - 2.1/3.y +1/9) + 1/3 = 6(y - 1/3)2 + 1/3 >= 1/3
Vậy P nhỏ nhất = 1/3 khi và chỉ khi 6(y - 1/3)2 = 0 <=> y - 1/3 = 0 <=> y = 1/3, x = 1 -2y = 1 - 2/3 = 1/3
Vậy P nhỏ nhất = 1/3 khi x = 1/3, y = 1/3
cho x,y>0 thỏa mãn x+2y>=5 tìm GTNN của H=x^2+2y^2+1/x+24/y
1,Cho x,y là số thực dương , x lớn hơn hoặc bằng 3y. Tìm GTNN của B=\(\frac{x^3-y}{x^2y}\)
2, Cho x,y là số thực dương, x lớn hơn hoặc bằng 2y.Tìm GTNN của B=\(\frac{x^3-2y^2+2x^2y}{x^2y}\)