Cho Δ ABC cân tại A. K là trung điểm của BC
a) CM: Δ ABK = Δ ACK
b) CM: AK⊥ BC
c) Vẽ KM ⊥ AB (M ∈ AB), KN ⊥ AC (N ∈ AC)
CM: AB2= MA2+MB2+2MK2
Cho Δ ABC cân tại A. Kẻ AH vuông góc với BC tại H. Qua H kẻ đường thẳng // với AC cắt AB tại D
a) CM: Δ ABH = Δ ACH
b) CM: Δ ADH cân và DH = \(\dfrac{1}{2}\)AB
c) gọi G là giao điểm của AH và CD. Qua A kẻ đường thẳng // BC cắt đường thẳng BG tại K. CM: AB // CK
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔABH=ΔACH
b: góc DAH=góc HAC=góc DHA
=>ΔDAH cân tại D
=>góc DHB=góc DBH
=>DH=DB=DA
=>D là trung điểm của AB
=>DH=1/2AB
Cho Δ ABC vuông tại B, BC = 15 cm, BA = 8 cm. Trên cạnh BC lấy E sao cho BE = BA
a) Tính AC
b) Δ ABE là tam giác gì? Vì sao
c) Từ B kẻ đường thẳng vuông với AE tại H và cắt AC tại D. Chứng minh BD là tia phân giác của góc ABC
d) Gọi I là giao điểm của đường thẳng AD và DE. Chứng minh A song song IC
Cho Δ ABC cân có góc A = 120°. Vẽ tia phân giác AI ( I ∈ BC ). Từ I vẽ IH vuông góc AB tại H, IK vuông góc AC tại K, trên đoạn HB lấy N sao cho HM = KN
a) Chứng minh Δ IMN cân
b) Chứng minh HK song song MN
c) Từ C vẽ đường thẳng d ⊥ BC cắt tia BA tại E. Biết CE = 8 cm. Tính CK và HK
THANKS MN
TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ
\(AB^2+BC^2=AC^2\)
=>\(8^2+15^2=289=>AC^{ }=17\)
=>AC=17 CM
Δ ABC cân tại A : D thuộc AB ; E thuộc AC : AD = AE .
1) CM : DE // BC
2) Gọi I là trung điểm của BC . CM : AI là trung trực của BC
3) AI cắt DE tại O . CM : O là trung điểm của DE
4) CM : Δ DIE cân
1 ) Cho Δ ABC cân tại A . Vẽ BH ⊥ AC tại H , biết AH = 7 cm : HC = 2 cm .
Tính BC ?
2 ) Cho Δ ABC cân tại A . Vẽ BH ⊥ AC tại H , biết AB = 15 cm : BC = 10 cm
Tính AH ?
Cho Δ ABC cân tại A , lấy điểm E thuộc cạnh AB , điểm M thuộc cạnh AC sao cho BE = CM
a) C/m Δ AEM cân
b) C/m góc ABM = góc ACE
c) C/m EM // BC
d) Gọi D là trung điểm của MC , trên tia BD lấy điểm N sao cho D là trung điểm của BN . C/m NE // BC
a: Ta có: AE+EB=AB
AM+MC=AC
mà AB=AC
và EB=MC
nên AE=AM
hay ΔAEM cân tại A
b: Xét ΔABM và ΔACE có
AB=AC
\(\widehat{BAM}\) chung
AM=AE
Do đó: ΔABM=ΔACE
Suy ra: \(\widehat{ABM}=\widehat{ACE}\)
c: XétΔABC có AE/AB=AM/AC
nên EM//BC
cho Δ ABC cân tại A (góc A nhọn, AB>BC). gọi H là trung điểm của BC.
a) cm Δ AHB= Δ AHC và AH vuông góc với BC tại H
b) gọi M là trung điểm của AB. qua A kẻ đường thẳng song song với BC, cắt tia HM tại D. giả sử AB=20cm, AD=12cm. cm AD=BH. tính độ dài đoạn AH
c) tia phân giác của góc BAD cắt tia CB tại N. kẻ NK vuông góc với AD tại K, NQ vuông góc với AB tại Q.cm AQ=AK và góc ANQ=45 độ +1/4BAC
d) CD cắt AB tại S.cm BC<3AS
Ai giúp em câu c và d vs ạ :(((
c) Xét ΔKAN vuông tại K và ΔQAN vuông tại Q có
AN chung
\(\widehat{KAN}=\widehat{QAN}\)
Do đó: ΔKAN=ΔQAN(cạnh huyền-góc nhọn)
Suy ra: AK=AQ(hai cạnh tương ứng)
cho Δ ABC cân tại A (góc A nhọn, AB>BC). gọi H là trung điểm của BC.
a) cm Δ AHB= Δ AHC và AH vuông góc với BC tại H
b) gọi M là trung điểm của AB. qua A kẻ đường thẳng song song với BC, cắt tia HM tại D. giả sử AB=20cm, AD=12cm. cm AD=BH. tính độ dài đoạn AH
c) tia phân giác của góc BAD cắt tia CB tại N. kẻ NK vuông góc với AD tại K, NQ vuông góc với AB tại Q.cm AQ=AK và góc ANQ=45 độ +1/4BAC
d) CD cắt AB tại S.cm BC<3AS
a) Xét ΔAHB và ΔAHC có
AB=AC(ΔBAC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH\(\perp\)BC tại H
b) Xét ΔADM và ΔBHM có
\(\widehat{DAM}=\widehat{HBM}\)(hai góc so le trong, AD//BH)
MA=MB(M là trung điểm của AB)
\(\widehat{AMD}=\widehat{BMH}\)(hai góc đối đỉnh)
Do đó: ΔADM=ΔBHM(g-c-g)
Suy ra: AD=BH(hai cạnh tương ứng)
mà AD=12cm(gt)
nên BH=12cm
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AH^2=20^2-12^2=256\)
hay AH=16(cm)
Cho ΔABC cân tại A, M là trung điểm cạnh BC và BD là đường pg của Δ (D ∈ ac). am và bd giao nhau ở I
1, cm: ci là tia pg góc acb
2, cm Δbic là Δ cân
3, gọi E là giao điểm của ci và ab. cm ed // bc
Cho Δ ABC cân tại A. Vẽ đường phân giác AE ( E thuộc BC)
a) Chứng minh Δ AEB = tam giác AEC vad AE vuông góc với BC
b) Cho biết AB = AC =5 cm và BC = 6 cm. Tính độ dài EB và AE
a: Xét ΔAEB và ΔAEC có
AE chung
góc BAE=góc CAE
AB=AC
=>ΔAEB=ΔAEC
b: EB=6/2=3cm
=>AE=4cm