cho Δ ABC cân tại A (góc A nhọn, AB>BC). gọi H là trung điểm của BC.
a) cm Δ AHB= Δ AHC và AH vuông góc với BC tại H
b) gọi M là trung điểm của AB. qua A kẻ đường thẳng song song với BC, cắt tia HM tại D. giả sử AB=20cm, AD=12cm. cm AD=BH. tính độ dài đoạn AH
c) tia phân giác của góc BAD cắt tia CB tại N. kẻ NK vuông góc với AD tại K, NQ vuông góc với AB tại Q.cm AQ=AK và góc ANQ=45 độ +1/4BAC
d) CD cắt AB tại S.cm BC<3AS
a) Xét ΔAHB và ΔAHC có
AB=AC(ΔBAC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH\(\perp\)BC tại H
b) Xét ΔADM và ΔBHM có
\(\widehat{DAM}=\widehat{HBM}\)(hai góc so le trong, AD//BH)
MA=MB(M là trung điểm của AB)
\(\widehat{AMD}=\widehat{BMH}\)(hai góc đối đỉnh)
Do đó: ΔADM=ΔBHM(g-c-g)
Suy ra: AD=BH(hai cạnh tương ứng)
mà AD=12cm(gt)
nên BH=12cm
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AH^2=20^2-12^2=256\)
hay AH=16(cm)