giải phương trình
(x-1)(x-2)(x-3)(x-4) =5
bài 1 giải các phương trình sau:
h,\(\left(\dfrac{3}{4}x-1\right)\left(\dfrac{5}{3}x+2\right)=0\)
bài 2 giải các phương trình sau:
b,3x-15=2x(x-5) m,(1-x)(5x+3)=(3x-7)(x-1)
d,x(x+6)-7x-42=0 p,\(\left(2x-1\right)^2-4=0\)
f,\(x^3+2x^2-\left(x-2\right)=0\) r,\(\left(2x-1\right)^2=49\)
h,(3x-1)(6x+1)=(x+7)(3x-1) t,\(\left(5x-3\right)^2-\left(4x-7\right)^2=0\)
j,\(\left(2x-5\right)^2-\left(x+2\right)^2=0\) u,\(x^2-10x+16=0\)
w,\(x^2-x-12=0\)
Bài `1:`
`h)(3/4x-1)(5/3x+2)=0`
`=>[(3/4x-1=0),(5/3x+2=0):}=>[(x=4/3),(x=-6/5):}`
______________
Bài `2:`
`b)3x-15=2x(x-5)`
`<=>3(x-5)-2x(x-5)=0`
`<=>(x-5)(3-2x)=0<=>[(x=5),(x=3/2):}`
`d)x(x+6)-7x-42=0`
`<=>x(x+6)-7(x+6)=0`
`<=>(x+6)(x-7)=0<=>[(x=-6),(x=7):}`
`f)x^3-2x^2-(x-2)=0`
`<=>x^2(x-2)-(x-2)=0`
`<=>(x-2)(x^2-1)=0<=>[(x=2),(x^2=1<=>x=+-2):}`
`h)(3x-1)(6x+1)=(x+7)(3x-1)`
`<=>18x^2+3x-6x-1=3x^2-x+21x-7`
`<=>15x^2-23x+6=0<=>15x^2-5x-18x+6=0`
`<=>(3x-1)(5x-1)=0<=>[(x=1/3),(x=1/5):}`
`j)(2x-5)^2-(x+2)^2=0`
`<=>(2x-5-x-2)(2x-5+x+2)=0`
`<=>(x-7)(3x-3)=0<=>[(x=7),(x=1):}`
`w)x^2-x-12=0`
`<=>x^2-4x+3x-12=0`
`<=>(x-4)(x+3)=0<=>[(x=4),(x=-3):}`
`m)(1-x)(5x+3)=(3x-7)(x-1)`
`<=>(1-x)(5x+3)+(1-x)(3x-7)=0`
`<=>(1-x)(5x+3+3x-7)=0`
`<=>(1-x)(8x-4)=0<=>[(x=1),(x=1/2):}`
`p)(2x-1)^2-4=0`
`<=>(2x-1-2)(2x-1+2)=0`
`<=>(2x-3)(2x+1)=0<=>[(x=3/2),(x=-1/2):}`
`r)(2x-1)^2=49`
`<=>(2x-1-7)(2x-1+7)=0`
`<=>(2x-8)(2x+6)=0<=>[(x=4),(x=-3):}`
`t)(5x-3)^2-(4x-7)^2=0`
`<=>(5x-3-4x+7)(5x-3+4x-7)=0`
`<=>(x+4)(9x-10)=0<=>[(x=-4),(x=10/9):}`
`u)x^2-10x+16=0`
`<=>x^2-8x-2x+16=0`
`<=>(x-2)(x-8)=0<=>[(x=2),(x=8):}`
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
Bài 1:Giải phương trình và bất phương trình
a) 9/ x2-4 =x-1/x+2 + 3/x-2
b) 1/x-5 - 3/x2 -6x+5= 5/x-1
a, \(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\left(ĐKXĐ:x\ne\pm2\right)\)
\(\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{x-1}{x+2}+\frac{3}{x-2}\)
\(\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
Khử mẫu : \(9=\left(x-1\right)\left(x-2\right)+3\left(x+2\right)\)
Đến đây nhường bn, rất dễ =))
b, \(\frac{1}{x-5}-\frac{3}{x^2-6x+5}=\frac{5}{x-1}\)
\(\frac{1}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5}{\left(x-1\right)}\)
\(\frac{\left(x-1\right)}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5\left(x-5\right)}{\left(x-1\right)\left(x-5\right)}\)
Khử mẫu \(x-1-3=5\left(x-5\right)\)
Tự lm nốt mà cho mk hỏi, đề bài có bpt mà bpt đâu
\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\left(ĐKXĐ:x\ne2;-2\right)\)
\(< =>\frac{9}{x^2-2^2}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(< =>\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3x+6}{\left(x+2\right)\left(x-2\right)}\)
\(< =>9=x^2-2x-x+2+3x+6\)
\(< =>x^2-\left(2x+x-3x\right)+\left(2+6-9\right)=0\)
\(< =>x^2-2=0\)\(< =>x^2=2\)
\(< =>x=\pm\sqrt{2}\left(tmđk\right)\)
Vậy tập nghiệm của phương trình trên là \(\pm\sqrt{2}\)
\(\frac{1}{x-5}-\frac{3}{x^2-6x+5}=\frac{5}{x-1}\left(ĐKXĐ:x\ne1;5\right)\)
\(< =>\frac{1}{x-5}-\frac{3}{x^2-x-5x+5}=\frac{5}{x-1}\)
\(< =>\frac{1}{x-5}-\frac{3}{x\left(x-1\right)-5\left(x-1\right)}=\frac{5}{x-1}\)
\(< =>\frac{1}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5}{x-1}\)
\(< =>\frac{x-1}{\left(x-5\right)\left(x-1\right)}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5x-25}{\left(x-1\right)\left(x-5\right)}\)
\(< =>x-1-3=5x-25\)
\(< =>5x-25-x+4=0\)
\(< =>4x-21=0\)
\(< =>x=\frac{21}{4}=7\left(tmđkxđ\right)\)
Giải Phương Trình-7x^2+4/x^3+1=5/x^2-x+1-1/x+1
`(-7x^2+4)/(x^3+1)=5/(x^2-x+1)-1/(x+1)(x ne -1)`
`<=>-7x^2+4=5(x+1)-x^2+x-1`
`<=>-7x^2+4=5x+5-x^2+x-1`
`<=>6x^2+6x=0`
`<=>6x(x+1)=0`
Vì `x ne -1=>x+1 ne 0`
`=>x=0`
Vậy `S={0}`
ĐKXĐ: \(x\ne-1\)
Ta có: \(\dfrac{-7x^2+4}{x^3+1}=\dfrac{5}{x^2-x+1}-\dfrac{1}{x+1}\)
\(\Leftrightarrow\dfrac{5\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{-7x^2+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
Suy ra: \(5x+5-x^2+x-1=-7x^2+4\)
\(\Leftrightarrow-x^2+6x+4+7x^2-4=0\)
\(\Leftrightarrow6x^2+6x=0\)
\(\Leftrightarrow6x\left(x+1\right)=0\)
mà 6>0
nên x(x+1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Vậy: S={0}
Bài 1 Chứng tỏ cặp phương trình sau tương đương
|x-3|=4 va (x+1)(2x-14)=0
Bài 2 Giải phương trình
X-3/x-5 + 1/x = x+5/x(x-5)
AI ĐÓ VÍT DÙM BÀI VĂN TẢ ÔNG CHO TRIỆU !!!!!!!!!!!
Giải bất phương trình
a) 4(x-3)2-(2x-1)2<10
b) x(x-5)(x+5)-(x+2)(x2-2x+4)<hoặc= 3
a: =>4x^2-24x+36-4x^2+4x-1<10
=>-20x<10-35=-25
=>x>=5/4
b: =>x(x^2-25)-x^3-8<=3
=>x^3-25x-x^3-8<=3
=>-25x<=11
=>x>=-11/25
Giải phương trình:
a, (4 - x)5 + (x - 2)5 = 32
b, (x - 1)5 + (x - 3)5 = 242(x + 1)
a, (4 - x )5 +(x - 2)5 =32
(=) 1024 - x5 + x5 - 32 = 32
(=) -x5 + x5 = 32 + 32 - 1024
(=) 0x = -960
=) phương trình vô nghiệm
Giải phương trình : 17 - 14(x + 1) = 13 - 4(x + 1) - 5(x - 3) Giải phương trình : 5x + 3,5 + (3x - 4) = 7x - 3(x - 0,5)
Ta có : 17 - 14(x + 1) = 13 - 4(x + 1) - 5(x - 3)
<=> 17 - 14x - 14 = 13 - 4x - 4 - 5x + 15
<=> -14x + 3 = -9x + 24
<=> -14x + 9x = 24 - 3
<=> -5x = 21
=> x = -4,2
Ta có : 5x + 3,5 + (3x - 4) = 7x - 3(x - 0,5)
<=> 5x + 3,5 + 3x - 4 = 7x - 3x + 1,5
<=> 8x - 0,5 = 4x + 1,5
=> 8x - 4x = 1,5 + 0,5
=> 4x = 2
=> x = \(\frac{1}{2}\)
17-14(x+1)=13-4(x+1)-5(x-3)
giải phương trình
(x-1)(4-x)≥ x(x-3)-2x2
\(\dfrac{x+2}{x-5}-3< 0\)
\(\dfrac{x+2}{x-5}-3< 0\)
\(\Leftrightarrow\dfrac{x+2-3\left(x-5\right)}{x-5}< 0\)
\(\Leftrightarrow x+2-3x+15< 0\)
\(\Leftrightarrow-2x+17< 0\)
\(\Leftrightarrow-2x< -17\)
\(\Leftrightarrow x>\dfrac{17}{2}\)
\(\left(x-1\right)\left(4-x\right)\ge x\left(x-3\right)-2x^2\)
\(\Leftrightarrow4x-x^2-4+x-x^2+3x+2x^2\ge0\)
\(\Leftrightarrow8x-4\ge0\)
\(\Leftrightarrow4\left(2x-1\right)\ge0\)
\(\Leftrightarrow2x-1\ge0\)
\(\Leftrightarrow2x\ge1\)
\(\Leftrightarrow x\ge\dfrac{1}{2}\)