Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Xuân Đình Lực
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 2 2020 lúc 19:34

\(\left(x+3y\right)^2\le\left(1+3^2\right)\left(x^2+y^2\right)=10\left(x^2+y^2\right)\)

\(\Rightarrow5\left(x^2+y^2\right)\ge\frac{1}{2}\left(x+3y\right)^2\)

\(\Rightarrow\frac{1}{2}\left(x+3y\right)^2-5\left(x+3y\right)+8\le0\)

\(\Leftrightarrow\left(x+3y\right)^2-10\left(x+3y\right)+16\le0\)

\(\Rightarrow2\le x+3y\le8\)

\(\Rightarrow3\le x+3y+1\le9\)

Khách vãng lai đã xóa
Bành Thệ Đú Trends
Xem chi tiết
Darlingg🥝
3 tháng 1 2020 lúc 16:17

\(x^2+\left(s-3x\right)^2-5x-15\left(s-3x\right)+8\le0\)

\(S=3x+y\Leftrightarrow y=S-3x\)

\(10x^2-2\left(3x-20\right)x+s^2-15s+8\le0\left(1\right)\)

Tìm đk S để có BPT (1) có nghiệm

Ta có:

\(\left(3s-20\right)^2-10s^2+150s-80\ge0\)

\(s^2-30s-320\le0\)

\(15-\sqrt{545}\le s\le15+\sqrt{545}\)

Vậy MinS = \(15-\sqrt{545}\)

Khách vãng lai đã xóa
Chờ thị trấn
Xem chi tiết
Chờ thị trấn
2 tháng 11 2021 lúc 8:51

ngu

Tralyn (Travis x Katelyn...
Xem chi tiết
Nguyễn Xuân Họa
7 tháng 3 2022 lúc 21:16

2x−3y/5=5y−2z/3=3z−5x/2=10x-15y/25=15y-6z/9=6z-10x/4=...+..+..../25+9+4=0/31=0

=> 2x=3y;  5y=2z ;  3z=5x => x/3=y/2; y/2=z/5

=> x/3=y/2 =z/5 = 12x/36=5y/10=3z/15= (12x+5y-3z)/31

      x/3 = 3y/6=2z/10 = (x-3y+2z)/7

=>  (12x+5y-3z)/ (x-3y+2z)=31/7

Đào Thu Hoà
Xem chi tiết
Đậu Đậu
14 tháng 6 2019 lúc 17:45

Mình nghĩ là làm như này nè:
Dễ cm:
+: \(\left(a+b\right)^2\le\)\(2\left(a^2+b^2\right)\)(với mọi a, b) ... Áp dụng => \(\left(x+y\right)^2\le\)\(2\)<=> \(-\sqrt{2}\le x+y\)\(\le\sqrt{2}\)
+: \(\sqrt{a+b}\le\)\(\sqrt{a}+\sqrt{b}\)\(\le\sqrt{2\left(a+b\right)}\)(Cái đầu dùng tương đương còn cái hai dùng bđt BCS)
ÁP dụng =>\(\sqrt{8-5\sqrt{2}}\le\) \(\sqrt{8+5\left(x+y\right)}\le\)\(T\)\(\le\sqrt{16+10\left(x+y\right)}\)\(\le\sqrt{16+10\sqrt{2}}\)
Dấu "=" <=> ...

Đào Thu Hòa 2
14 tháng 6 2019 lúc 18:06

Bạn @Đậu Đậu gì đó ơi, Bạn giải tới đó thì max=\(16+10\sqrt{2}\)thì mình hiểu rồi , còn min =??? ghi rõ hộ mình nhé

Đậu Đậu
14 tháng 6 2019 lúc 18:14

\(\sqrt{a+b}\le\)\(\sqrt{a}+\sqrt{b}\)

<=> a+b \(\le a+b+2\sqrt{ab}\)<=> \(\sqrt{ab}\ge0\)ĐÚNG
Thì áp dụng thôi

Phan Trung Hiếu
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Yen Nhi
23 tháng 11 2021 lúc 12:34

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

Khách vãng lai đã xóa
Ngọc Ngô
Xem chi tiết
alibaba nguyễn
20 tháng 9 2019 lúc 9:12

\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)

\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)

\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)

\(=5\left(a+b\right)=5.2016=10080\)

Nguyễn Linh Chi
23 tháng 9 2019 lúc 14:53

alibaba nguyễn Em kiểm tra lại bài làm của mình nhé! 

tth_new
23 tháng 9 2019 lúc 18:37

Nguyễn Linh Chi haha, em nhìn ra rối, chỗ dấu "=" thứ 2 phải sửa lại thành dấu "+" ,còn anh ấy phân tích có sai chỗ nào thì em ko biết:D (hình như là đúng)

Anh Mai
Xem chi tiết