Cho \(\Delta\)ABC có AB = 18, AC = 24, BC = 30: m là trung điểm BC. Qua M kẻ đường vuông góc vs BC cắt AC và AB lần lượt ở D và E.
a/ CM : \(\Delta ABC\sim\Delta MDC\)
b/ Tính các cạnh của \(\Delta\)MDC
c/ Tính BE, EC
cho \(\Delta\)ABC vuông tại A có AB>AC . Lấy M là 1 điểm tùy ý . Qua M kể đường thẳng vuông góc với BC và cắt AB tại I ,cắt AC tại D
a/ CM :\(\Delta ABC\sim\Delta MDC\)
b/ CM : BI.BA=BM.BC
c/ CM : góc BAM=góc ICB từ đó CM: AB là tia phân giác góc MAK (\(CI\cap BD\) tại k)
d/ cho AB=8cm và AC=6 cm . Khi AM là tia phân giác trong\(\Delta ABC\) hãy tính diện tích tứ giác AMBD
cho \(\Delta\)ABC vuông tại A có AB>AC. Lấy điểm M là một điểm bất kì thuộc cạnh BC. Qua M kẻ đường thẳng vuông góc với BC và cắt đoạn thẳng ABtại diểm I, cắt đường thẳng AC tại điểm D. C/m \(\Delta\)ABC\(\sim\)\(\Delta\)MDC
giúp mình với ạTT
xét ΔABC và ΔMDC ta có
\(\widehat{C}\) chung
\(\widehat{BAC}=\widehat{DMC}=90^o\left(gt\right)\)
=>ΔABC ∼ ΔMDC(g.g)
Cho tam giác ABC có AB = 18 cm, AC = 24 cm, BC = 30 cm. Gọi M là trung điểm BC. Qua M kẻ đg thẳng vuông góc vs BC cắt AC, AB lần lượt ở D, E.
a, CMR: tam giác ABC, tam giác MDC đồng dạng vs nhau.
b, Tính các cạnh tam giác MDC
c, Tính độ dài BE, EC
a: Xét ΔABC có \(AB^2+AC^2=BC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A và ΔMDC vuông tại M có
\(\widehat{MCD}\) chung
Do đó: ΔABC~ΔMDC
b: Ta có: M là trung điểm của BC
=>\(MB=MC=\dfrac{BC}{2}=15\left(cm\right)\)
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot15\cdot20=150\left(cm^2\right)\)
Ta có; ΔABC~ΔMDC
=>\(\dfrac{AB}{MD}=\dfrac{BC}{DC}=\dfrac{AC}{MC}\)
=>\(\dfrac{18}{MD}=\dfrac{30}{DC}=\dfrac{24}{15}=\dfrac{8}{5}\)
=>\(MD=18\cdot\dfrac{5}{8}=\dfrac{90}{8}=\dfrac{45}{4}\left(cm\right);DC=30\cdot\dfrac{5}{8}=\dfrac{150}{8}=\dfrac{75}{4}\left(cm\right)\)
c: Xét ΔBME vuông tại M và ΔBAC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔBME~ΔBAC
=>\(\dfrac{BE}{BC}=\dfrac{BM}{BA}\)
=>\(\dfrac{BE}{30}=\dfrac{15}{18}=\dfrac{5}{6}\)
=>BE=25(cm)
Ta có: BE=BA+AE
=>AE+18=25
=>AE=7(cm)
ΔCAE vuông tại A
=>\(CA^2+AE^2=CE^2\)
=>\(CE^2=7^2+24^2=625\)
=>\(CE=\sqrt{625}=25\left(cm\right)\)
Cho tam giác ABC có AB = 18 cm, AC = 24 cm, BC = 30 cm. Gọi M là trung điểm BC. Qua M kẻ đg thẳng vuông góc vs BC cắt AC, AB lần lượt ở D, E.
a, CMR: tam giác ABC, tam giác MDC đồng dạng vs nhau.
b, Tính các cạnh tam giác MDC
c, Tính độ dài BE, EC
d, Chứng minh BD vuông góc vs EC
Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).
a. Chứng minh: \(\Delta AED\sim\Delta ABC\)
b. Gọi M là điểm đối xứng của B qua H. Từ M kẻ đường thẳng vuông góc với BC cắt cạnh AC tại N. Chứng minh rằng DE song song với BN
d.Chứng minh rằng: \(\dfrac{AB^3}{AC^3}=\dfrac{BD}{CE}\)
---> Giúp minh với ạ, mai mình nộp rồiT.T
Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^
Sao bổ sung hình vẽ không được vậy nè
Cho hình chữ nhật ABCD có AB = 6cm, BC = 8cm. Vẽ BH vuông góc với AC (H \(\in\) AC )
a) C/m: \(\Delta\)BHC \(\sim\) \(\Delta\)CDA
b) Tính diện tích \(\Delta\)BHC
c) Gọi M, B lần lượt là trung điểm của AH và BH, tia MN cắt BC tại E. Chứng minh \(\Delta\)CEH \(\sim\) \(\Delta\)CMB
Cho \(\Delta\)ABC vuông cân tại A. Trên các cạnh góc vuông AB, AC, lấy điểm D và E sao cho AD = AE. Qua điểm D vẽ đường thẳng vuông góc BE cắt BC ở K. Qua điểm A vẽ đường thẳng vuông góc BE cắt BC ở H. Gọi M là giao điểm của DK và AC
a. C/m : \(\Delta\)BAE = \(\Delta\)CAD
b. \(\Delta\)MDC cân
c. HK = HC
Cho \(\Delta ABC\)vuông tại A, AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K
a) Tính BC
b) Chứng minh \(\Delta ABE=\Delta DBE\)và suy ra BE là tia phân giác \(\widehat{ABC}\)
c) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE ở M. Chứng minh \(\Delta AME\)cân
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
Cho \(\Delta ABC\)vuông tại A. Trên cạnh AC lấy điểm E ( E không trùng với các điểm A, C). Qua E kẻ đường thẳng d vuông góc với BC tại F và đường thẳng d cắt BA tại K.
a, Cm: \(\Delta CEF~\Delta CAB\)
b, Cm: BA.BK = BF.BC
c, Cm: góc BAF = góc BCK
d, Gọi M là trung điểm của CK, qua B kẻ đường vuông góc với BM cắt các tia CA và KF lần lượt tại P và Q.
Cm: BQ = BP
a) Xét \(\Delta CEF\)và \(\Delta CAB\)có:
\(\widehat{CFE}=\widehat{CBA}\left(=90^0\right)\).
\(\widehat{BCA}\)chung.
\(\Rightarrow\Delta CEF~\Delta CAB\left(g.g\right)\)(điều phải chứng minh).
b) Xét \(\Delta ABC\)và \(\Delta FBK\)có:
\(\widehat{KBC}\)chung.
\(\widehat{BAC}=\widehat{BFK}\left(=90^0\right)\).
\(\Rightarrow\Delta ABC~\Delta FBK\left(g.g\right)\).
\(\Rightarrow\frac{BA}{BF}=\frac{BC}{BK}\)(tỉ số đồng dạng).
\(\Rightarrow BA.BK=BF.BC\)(điều phải chứng minh).
c) Ta có: \(\frac{BA}{BF}=\frac{BC}{BK}\)(theo câu a)).
\(\Rightarrow\frac{BA}{BC}=\frac{BF}{BK}\)(tính chất của tỉ lệ thức).
Xét \(\Delta BAF\)và \(\Delta BCK\)có:
\(\frac{BA}{BC}=\frac{BF}{BK}\)(chứng minh trên).
\(\widehat{KBC}\)chung.
\(\Rightarrow\Delta BAF~\Delta BCK\left(c.g.c\right)\).
\(\Rightarrow\widehat{BAF}=\widehat{BCK}\)(2 góc tương ứng) (điều phải chứng minh).