1/ chứng minh n^3 + 2n^2 - n - 2 Chia hét cho 6 với mọi n thuộc z
Chứng minh rằng: n2.(n+1)+2n.(n+1) luôn chia hết cho 6 với mọi n thuộc Z
n^2.(n+1) + 2n.(n+1)
=(n+1). (n^2 + 2n)
= (n+1).n.(n+2) chia hết cho 6 (tích 3 số tự nhiên liên tiếp chia hết cho 6)
n2.(n + 1) + 2n.(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)
Vì n(n + )(n + 2) là tích của 3 số nguyên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3.
=> Tích n(n + 1)(n + 2) chia hết cho 2 và 3.
Mà (2,3) = 1
=> n(n + 1)(n + 2) chia hết cho 6
=> n2.(n+1)+2n.(n+1) chia hết cho 6
Chứng minh
2n^4-7n^3-2n^2+13n+6 chia hết cho 6 với mọi n thuộc Z
\(A=\left(n-2\right)\left(n-3\right)\left(n+1\right)\left(2n+1\right)\)
Vì n-2;n-3 là hai số liên tiếp
nên (n-2)(n-3) chia hết cho 2
=>A chia hết cho 2
TH1: n=3k
=>n-3=3k-3 chia hết cho 3
TH2: n=3k+1
=>2n+1=6k+2+1=6k+3 chia hết cho 3
TH3: n=3k+2
=>n+1=3k+3 chia hết cho 3
=>A chia hết cho 6
Chứng minh rằng:
n2.(n+1)+2n.(n+1) luôn chia hết cho 6 với mọi n thuộc Z
chứng minh rằng n^4+2n^3-n^2-2n chia hết cho 24 với mọi n thuộc Z
Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath
Chứng minh rằng 2n3 + 3n2 + n chia hết cho 6 với mọi số nguyên n thuộc Z
Ta có:
\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)=n\left(2n^2+2n+n+1\right)=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(2n-2+3\right)=n\left(n+1\right)\left(2n-2\right)+3n\left(n+1\right)=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)
Ta thấy:
\(n-1;n;n+1\) là 3 số nguyên liên tiếp (\(n\in Z\)) => tích của chúng chia hết cho 2 và 3. \(\Rightarrow2\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
Và \(3n\left(n+1\right)⋮6\Rightarrow2n^3+3n^2+n⋮6\)
Bài 3: Chứng minh với mọi n thuộc Z
a) (n-1).(n+1)-(n-7).(n-5) chia hết cho 12
b) n.(2n-3)-2n.(n+2) chia hết cho 5
a) Ta có (n - 1)(n + 1) - (n - 7)(n - 5)
= n2 - 1 - (n2 - 12n + 35)
= n2 - 1 - n2 + 12n - 35
= 12n - 36 = 12(n - 3) \(⋮12\forall n\inℤ\)
b) Ta có n(2n - 3) - 2n(n + 2)
= 2n2 - 3n - 2n2 - 2n
= - 5n \(⋮5\forall n\inℤ\)
Chứng minh rằng với mọi n thuộc Z thì:
a) n (2n - 3) - 2n (n + 1) chia hết cho 5
b) (n-1) (n+4) - (n-4) (n+1) chia hết cho 6
a, Chứng minh rằng với mọi m thuộc Z ta luôn có m3 - m chia hết cho 6 .
b, Chứng minh rằng với mọi n thuộc Z ta luôn có ( 2n - 1 ) - 2n + 1 chia hết cho 8
a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp
=> m(m+1)(m-1) chia hết cho 3 và 2
Mà (3,2) = 1
=> m(m+1)(m-1) chia hết cho 6
=> m^3 - m chia hết cho 6 V m thuộc Z
b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8
=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z
Tick nha pham thuy trang
a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6
mk chỉ biết có thế thôi
công thanh sai rồi số nguyên chứ đâu phải số tự nhiên
Chứng minh rằng:
a, n(2n-3) - 2n(n+1) chia hết cho 5 với mọi n thuộc Z
b, (n-1)(3-2n) - n(n+5) chia hết cho 3 với mọi n thuộc N
a) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)\(⋮\)\(5\)
b) \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)
\(=3n-2n^2-3+2n-n^2-5n\)
\(=-3n^2-3\)
\(=-3\left(n^2+1\right)\)\(⋮\)\(3\)