chứng minh rằng abc+bac+cab là hợp số
Cho S =abc +bac +cab .Chứng minh rằng s không là 1 số chính phương
S=abc+bac+cab
=(100a+10b+c)+(100b+10a+c)+(100c+10a+b)
=(100a+10a+a)+(100b+10b+b)+(100c+10c+c)
=111a+111b+111c=111(a+b+c)=3.37.(a+b+c)
Giả sử S là SCP,mà 37 nguyên tố
=>S chia hết cho 37.Nhưng a+b+c ko chia hết cho 37
Vậy trái giả thiết
=>đpcm
Chứng minh rằng
abc+cab+bac lớn hơn hoặc bằng 111
Nếu đế là abc cab+bac thì:
abc+cab+bac=(a+b+c)*111 nên sẽ chia hết cho 111
abc+cab+bac khong bang 0 nen no co bcnn la 111
Vậy số đó lớn hơn hoặc bắng 111
abc+cab+bac=111a+111b+111c=111(a+b+c)
mà a+B+c>1 nên DPCM
a>0 ; b>0 ; c>0
thi abc be nhat la 111
ma 111+111+111=333>111
chứng minh rằng nếu abc chia hết cho 37 thì bac và cab đề chia hết cho 37
kkk, thế này mà cũng hỏi:
abc là một tích, các thừa số có thể đổi vị trí nhưng vẫn ra 1 kết quả
=> abc,bac,cab đều chia hết cho 37
(abc) chia hết cho 37 =>100.a+10. b+c chia hết cho 37 => 1000.a-999,a+100.b+10.c chia hết cho 37( vì 999.a chia hết cho 37)=>100.c+a=(bca)chia hết cho 37.
Chứng minh rằng tổng sau không là số chính phương
A = abc + bca + cab
abc và bca và cab là số tự nhiên
A = abc + bca + cab
=> A =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )
=>A = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
=> A = 111a + 111b + 111c
=> A= 111( a+b+c )= 37 . 3( a+b + c)
giả sử A là số chính phương thì A phải chứa thừa số nguyên tố 37 với số mũ chẵn nên
3(a+b+c) chia hết 37
=> a+b+c chia hết cho 37
Điều này không xảy ra vì 1 \(\le\) a + b + c \(\le\) 27
A = abc + bca + cab không phải là số chính phương
Chứng tỏ rằng tổng sau không là số chính phương ? A = abc + bac + cab
Cho S=abc+bca+cab
Chứng minh rằng S không phải là số chính phương
\(S=\overline{abc}+\overline{bca}+\overline{cab}\)
\(=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)
\(=111a+111b+111c\)
\(=111\left(a+b+c\right)=37.3\left(a+b+c\right)\)
vì : \(0< a,b,c\le9;\left(a;b;c\in N\right)\)
\(\Rightarrow a+b+c\le27\)
\(\Rightarrow a+b+c⋮̸37̸\)
mà \(\left(3,37\right)=1\)
\(\Rightarrow3\left(a+b+c\right)⋮̸37̸\)
do đó S không là số chính phương
S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
Chứng minh rằng abc + bca + cab không phải là số chính phương
nói cách làm nữa nhé ^_^
Ta có :abc + bca + cab = 111a+ 111b+111c=111(a+b+c)= 3.37.(a+b+c)
Vì SCP chứa các thừ số ng tố với số mũ chẵn nên 3. 37.(a+b+c)=3.37.k^2
Vô lí vì 3<a+b+c<27
Vậy , abc+bca+cba ko là số chính phương.
1li-ke nha ! > . < !
mình ko hiểu cách giải này của bạn ở cái chỗ bạn bảo vô lý đó
Chứng minh rằng :
abc chia hết cho 37 thì bac và cab chia hết cho 37
Cho M=\(\overline{abc}+\overline{bca}+\overline{cab}\) là số chính phương. Chứng minh rằng M không là số chính phương
M=abc+bca+cab= (1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b) = 1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy M không phải là số chính phương