Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dung doan
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2021 lúc 17:46

\(a=\lim\limits_{x\rightarrow2}\dfrac{\left(x^2-x-2\right)\left(x^2+x\sqrt[3]{3x+2}+\sqrt[3]{\left(3x+2\right)^2}\right)}{\left(x^3-3x-2\right)\left(x+\sqrt[]{x+2}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+1\right)\left(x^2+x\sqrt[3]{3x+2}+\sqrt[3]{\left(3x+2\right)^2}\right)}{\left(x-2\right)\left(x+1\right)^2\left(x+\sqrt[]{x+2}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+x\sqrt[3]{3x+2}+\sqrt[3]{\left(3x+2\right)^2}}{\left(x+1\right)\left(x+\sqrt[]{x+2}\right)}=...\)

\(b=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt[]{1+2x}-x-1\right)+\left(x+1-\sqrt[3]{1+3x}\right)}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{x^2}{\sqrt[]{1+2x}+x+1}+\dfrac{x^3+3x^2}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{1}{\sqrt[]{1+2x}+x+1}+\dfrac{x+3}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}\right)\)

\(=...\)

Nguyễn Việt Lâm
7 tháng 2 2021 lúc 17:55

\(c=\lim\limits_{x\rightarrow-1}\dfrac{\left(\sqrt[]{5+4x}-2x-3\right)+\left(2x+3-\sqrt[3]{7+6x}\right)}{x^3+x^2-x-1}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{5+4x-\left(2x+3\right)^2}{2x+3+\sqrt[]{5+4x}}+\dfrac{\left(2x+3\right)^3-\left(7+6x\right)}{\left(2x+3\right)^2+\left(2x+3\right)\sqrt[3]{7+6x}+\sqrt[3]{\left(7+6x\right)^2}}}{\left(x-1\right)\left(x+1\right)^2}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{-4\left(x+1\right)^2}{2x+3+\sqrt[]{5+4x}}+\dfrac{\left(x+1\right)^2\left(8x+20\right)}{\left(2x+3\right)^2+\left(2x+3\right)\sqrt[3]{7+6x}+\sqrt[3]{\left(7+6x\right)^2}}}{\left(x-1\right)\left(x+1\right)^2}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{-4}{2x+3+\sqrt[]{5+4x}}+\dfrac{8x+20}{\left(2x+3\right)^2+\left(2x+3\right)\sqrt[3]{7+6x}+\sqrt[3]{\left(7+6x\right)^2}}}{x-1}\)

\(=...\)

dung doan
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2021 lúc 18:01

\(a=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+1}-1+1-\sqrt[3]{2x+1}}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{4x}{\sqrt[]{4x+1}+1}+\dfrac{-2x}{1+\sqrt[3]{2x+1}+\sqrt[3]{\left(2x+1\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{4}{\sqrt[]{4x+1}+1}+\dfrac{-2}{1+\sqrt[3]{2x+1}+\sqrt[3]{\left(2x+1\right)^2}}\right)=...\)

\(b=\lim\limits_{x\rightarrow1}\dfrac{4\left(x-1\right)\left(\sqrt[3]{\left(5x+3\right)^2}+2\sqrt[3]{5x+3}+4\right)}{5\left(x-1\right)\left(\sqrt[]{4x+5}+3\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{4\left(\sqrt[3]{\left(5x+3\right)^2}+2\sqrt[3]{5x+3}+4\right)}{5\left(\sqrt[]{4x+5}+3\right)}=...\)

\(c=\lim\limits_{x\rightarrow-1}\dfrac{\left(2x+3\right)^{\dfrac{1}{4}}+\left(2+3x\right)^{\dfrac{1}{3}}}{\left(x+2\right)^{\dfrac{1}{2}}-1}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{1}{2}\left(2x+3\right)^{-\dfrac{3}{4}}+\left(2+3x\right)^{-\dfrac{2}{3}}}{\dfrac{1}{2}\left(x+2\right)^{-\dfrac{1}{2}}}=3\)

Hiếu Chuối
Xem chi tiết
dung doan
Xem chi tiết
Hoàng Tử Hà
27 tháng 1 2021 lúc 18:40

a/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}\sqrt{x^2+1}+\dfrac{2x}{x}+\dfrac{1}{x}}{\dfrac{x}{x}\sqrt[3]{\dfrac{2x^3}{x^3}+\dfrac{x}{x^3}+\dfrac{1}{x^3}}+\dfrac{x}{x}}=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}+2}{\sqrt[3]{2}+1}=+\infty\)

b/ \(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2.1^2-1+1}-\sqrt[3]{2.1+3}}{3.1^2-2}=...\)

c/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{x\sqrt{\dfrac{4x^2}{x^2}+\dfrac{x}{x^2}}+x\sqrt[3]{\dfrac{8x^3}{x^3}+\dfrac{x}{x^3}-\dfrac{1}{x^3}}}{x\sqrt[4]{\dfrac{x^4}{x^4}+\dfrac{3}{x^4}}}=\dfrac{2+2}{1}=4\)

dung doan
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 1 2021 lúc 19:41

\(a=\lim\limits_{x\rightarrow1^+}\dfrac{x\sqrt{x-1}}{\sqrt{x-1}\left(1-\sqrt{x-1}\right)}=\lim\limits_{x\rightarrow1^+}\dfrac{x}{1-\sqrt{x-1}}=1\)

\(b=\lim\limits_{x\rightarrow3}\dfrac{x^2+x-12}{\left(x-3\right)\left(\sqrt{x^2+x}+2\sqrt{3}\right)}=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+4\right)}{\left(x-3\right)\left(\sqrt{x^2+x}+2\sqrt{3}\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{x+4}{\sqrt{x^2+x}+2\sqrt{3}}=\dfrac{7}{\sqrt{12}+2\sqrt{3}}=...\)

\(c=\lim\limits_{x\rightarrow-2}\dfrac{\left(x+2\right)\left(x^3-2x^2+4x\right)}{\left(x^2+1\right)\left(x+2\right)}=\lim\limits_{x\rightarrow-2}\dfrac{x^3-2x^2+4x}{x^2+1}=-\dfrac{24}{5}\)

dung doan
Xem chi tiết
Hoàng Tử Hà
27 tháng 1 2021 lúc 18:11

a/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{-x\sqrt{\dfrac{4x^2}{x^2}-\dfrac{2}{x^2}}-x\sqrt[3]{\dfrac{x^3}{x^3}+\dfrac{1}{x^3}}}{-x\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}-x}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{4}-1}{-1-1}=\dfrac{3}{2}\)

b/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{2x}{x}+\dfrac{3}{x}}{-\sqrt{\dfrac{2x^2}{x^2}-\dfrac{3}{x^2}}}=\dfrac{2}{-\sqrt{2}}=-\sqrt{2}\)

c/ \(\lim\limits_{x\rightarrow\pm\infty}\dfrac{\dfrac{2x^2}{x^2}-\dfrac{1}{x^2}}{\dfrac{3}{x^2}-\dfrac{x^2}{x^2}}=\dfrac{2}{-1}=-2\)

dung doan
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 1 2021 lúc 18:59

\(a=\lim\limits_{x\rightarrow1^+}\dfrac{x^2-x+1}{x^2-1}=\dfrac{1}{0}=+\infty\)

\(b=\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-2+2-\sqrt[3]{8+x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{2x}{\sqrt{1+x}+1}-\dfrac{x}{4+2\sqrt[3]{8+x}+\sqrt[3]{\left(8+x\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{2}{\sqrt{1+x}+1}-\dfrac{1}{4+2\sqrt[3]{8+x}+\sqrt[3]{\left(8+x\right)^2}}\right)=\dfrac{2}{2}-\dfrac{1}{12}=...\)

\(c=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(\sqrt{2x-2}+2\right)}{2\left(x-3\right)\left(\sqrt{x+6}+3\right)}=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{2x-2}+2}{2\left(\sqrt{x+6}+3\right)}=\dfrac{2+2}{2\left(3+3\right)}=...\)

dung doan
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2021 lúc 18:06

\(a=\lim\limits_{x\rightarrow3}\dfrac{2x+3-x^2}{\left(x^2-4x+3\right)\left(\sqrt[]{2x+3}+x\right)}=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(-x-1\right)}{\left(x-3\right)\left(x-1\right)\left(\sqrt[]{2x+3}+x\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{-x-1}{\left(x-1\right)\left(\sqrt[]{2x+3}+x\right)}=...\)

\(b=\lim\limits_{x\rightarrow0}\dfrac{\left(x+1\right)^{\dfrac{1}{3}}-1}{\left(2x+1\right)^{\dfrac{1}{4}}-1}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{3}\left(x+1\right)^{-\dfrac{2}{3}}}{\dfrac{1}{2}\left(2x+1\right)^{-\dfrac{3}{4}}}=\dfrac{2}{3}\)

\(c=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt[]{1+4x}-2x-1\right)+\left(2x+1-\sqrt[3]{1+6x}\right)}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{-4x^2}{2x+1+\sqrt[]{4x+1}}+\dfrac{x^2\left(8x+12\right)}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{1+6x}+\sqrt[3]{\left(1+6x\right)^2}}}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{-4}{2x+1+\sqrt[]{4x+1}}+\dfrac{8x+12}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{1+6x}+\sqrt[3]{\left(1+6x\right)^2}}\right)=...\)

Châu Ngọc Minh Anh
Xem chi tiết
Hoàng Tử Hà
20 tháng 2 2021 lúc 17:38

a/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{x\sqrt{x^2+1}}{x}-\dfrac{2x}{x}+\dfrac{1}{x}}{\sqrt[3]{\dfrac{2x^3}{x^3}-\dfrac{2x}{x^3}}+\dfrac{1}{x}}=0\)

b/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{8x^7}{x^7}}{\dfrac{\left(-2x^7\right)}{x^7}}=-\dfrac{8}{2^7}\)

c/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{\dfrac{4x^2}{x^2}+\dfrac{x}{x^2}}+\sqrt[3]{\dfrac{8x^3}{x^3}+\dfrac{x}{x^3}-\dfrac{1}{x^3}}}{\sqrt[4]{\dfrac{x^4}{x^4}+\dfrac{3}{x^4}}}=\dfrac{2+2}{1}=4\)

Trần Thị Hằng
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 1 2019 lúc 18:50

1/ \(\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-2+2-\sqrt[3]{8-x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{2x}{\sqrt{1+x}+1}+\dfrac{x}{4+2\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{2}{\sqrt{1+x}+1}+\dfrac{1}{4+2\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}\right)=\dfrac{13}{12}\)

2/ \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-\sqrt{x+3}}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-2-\left(\sqrt{x+3}-2\right)}{\left(x-1\right)\left(x-2\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{x-1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}-\dfrac{x-1}{\sqrt{x+3}+2}}{\left(x-1\right)\left(x-2\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}-\dfrac{1}{\sqrt{x+3}+2}}{x-2}=\dfrac{1}{6}\)

3/ \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x^2+7}-\sqrt{5-x^2}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x^2+7}-2+2-\sqrt{5-x^2}}{x^2-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{\left(x^2-1\right)}{\sqrt[3]{\left(x^2+7\right)^2}+2\sqrt[3]{x^2+7}+4}+\dfrac{x^2-1}{2+\sqrt{5-x^2}}}{x^2-1}\)

\(=\lim\limits_{x\rightarrow1}\left(\dfrac{1}{\sqrt[3]{\left(x^2+7\right)^2}+2\sqrt[3]{x^2+7}+4}+\dfrac{1}{2+\sqrt{5-x^2}}\right)=\dfrac{1}{3}\)

4/ \(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x+11}-\sqrt[3]{8x+43}}{2x^2+3x-2}=\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x+11}-3-\left(\sqrt[3]{8x+43}-3\right)}{\left(2x-1\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\dfrac{x+2}{\sqrt{x+11}+3}-\dfrac{8\left(x+2\right)}{\sqrt[3]{\left(8x+43\right)^2}+3\sqrt[3]{8x+43}+9}}{\left(2x-1\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\dfrac{1}{\sqrt{x+11}+3}-\dfrac{8}{\sqrt[3]{\left(8x+43\right)^2}+3\sqrt[3]{8x+43}+9}}{2x-1}=\dfrac{7}{270}\)

5/ \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[n]{1+ax}-\sqrt[m]{1+bx}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\sqrt[n]{1+ax}-1-\left(\sqrt[m]{1+bx}-1\right)}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{ax}{\sqrt[n]{\left(1+ax\right)^{n-1}}+\sqrt[n]{\left(1+ax\right)^{n-2}}+...+1}-\dfrac{bx}{\sqrt[m]{\left(1+bx\right)^{m-1}}+\sqrt[m]{\left(1+ax\right)^{m-2}}+...+1}}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{a}{\sqrt[n]{\left(1+ax\right)^{n-1}}+\sqrt[n]{\left(1+ax\right)^{n-2}}+...+1}-\dfrac{b}{\sqrt[m]{\left(1+bx\right)^{m-1}}+\sqrt[m]{\left(1+ax\right)^{m-2}}+...+1}\)

\(=\dfrac{a}{n}-\dfrac{b}{m}\)

6/ \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}-\sqrt{1+4x}+\sqrt{1+4x}-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\left(\sqrt[3]{1+6x}-1\right)+\sqrt{1+4x}-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\dfrac{6x}{\sqrt[3]{\left(1+6x\right)^2}+\sqrt[3]{1+6x}+1}+\dfrac{4x}{\sqrt{1+4x}+1}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{6\sqrt{1+4x}}{\sqrt[3]{\left(1+6x\right)^2}+\sqrt[3]{1+6x}+1}+\dfrac{4}{\sqrt{1+4x}+1}\right)=4\)