Bài 2: Giới hạn của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dung doan

\(\lim\limits_{x\rightarrow1^+}\dfrac{x^2-x+1}{x^2-1}\)

\(\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\)

\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{x+6}-3}{\sqrt{2x-2}-2}\)

Nguyễn Việt Lâm
27 tháng 1 2021 lúc 18:59

\(a=\lim\limits_{x\rightarrow1^+}\dfrac{x^2-x+1}{x^2-1}=\dfrac{1}{0}=+\infty\)

\(b=\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-2+2-\sqrt[3]{8+x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{2x}{\sqrt{1+x}+1}-\dfrac{x}{4+2\sqrt[3]{8+x}+\sqrt[3]{\left(8+x\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{2}{\sqrt{1+x}+1}-\dfrac{1}{4+2\sqrt[3]{8+x}+\sqrt[3]{\left(8+x\right)^2}}\right)=\dfrac{2}{2}-\dfrac{1}{12}=...\)

\(c=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(\sqrt{2x-2}+2\right)}{2\left(x-3\right)\left(\sqrt{x+6}+3\right)}=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{2x-2}+2}{2\left(\sqrt{x+6}+3\right)}=\dfrac{2+2}{2\left(3+3\right)}=...\)


Các câu hỏi tương tự
dung doan
Xem chi tiết
dung doan
Xem chi tiết
Trần Thị Hằng
Xem chi tiết
dung doan
Xem chi tiết
dung doan
Xem chi tiết
dung doan
Xem chi tiết
Trần Thị Hằng
Xem chi tiết
dung doan
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết