\(M=5+5^2+5^3+....+5^{60}\)
\(a\)) Tính M
\(b\))\(M+5=5^{n-5}\)
cho M=\(5+5^2+5^3+...+5^{60}\)
a)tính M
b)tìm n biết M+5=5\(^{n-5}\)
a)
M = 5 + 52 + 53 + ... + 560
=> 5M = 5.(5 + 52 + 53 + ... + 560)
=> 5M = 52 + 53 + 54 + ... + 561
=> 5M - M = (52 + 53 + 54 + ... + 561) - (5 + 52 + 53 + ... + 560)
=> 4M = 561 - 5
=> M = (561 - 5) : 4
a)Ta có :
\(M=5+5^2+5^3+...+5^{60}\)
\(5M=5^2+5^3+5^4+...+5^{61}\)
\(5M-M=\left(5^2+5^3+5^4+...+5^{61}\right)-\left(5+5^2+5^3+...+5^{60}\right)\)
\(4M=5^{61}-5\)
\(M=\frac{5^{61}-5}{4}\)
cho M = 5 + 52+53+54+.....+560
a) tính M
b)chứng minh M\(⋮\)6
c)Tìm số tự nhiên n biết M+5=5n-5
a) 5M=5(\(5+5^2++.......+5^{60}\)
5M=\(5^2+5^3+...+5^{61}\)
5M-M=\(\left(5^2+5^3+...+5^{61}\right)-\left(5+5^2+5^3+...+5^{60}\right)\)
4M=\(5^{61}-5\)
M=\(\left(5^{61}-5\right):4\)
b) \(\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{59}+5^{60}\right)\)
\(5\left(1+5\right)+5^3\left(1+5\right)+...+5^{59}\left(1+5\right)\)
\(5\cdot6+5^3\cdot6+...+5^{59}\cdot6\)
\(6\left(5+5^3+5^5+...+5^{59}\right)\)
\(\Rightarrow M⋮6\)
M= 5 + 5 mủ 2 + 5 mủ 3 +.....+ 5 mủ 60
tính M
C/M M chia hết cho 6
tìm n thuộc N biết M + 5 = 5 mủ n - 5
Ta có :
\(M=5+5^2+5^3+...+5^{60}\)
\(\Leftrightarrow\)\(5M=5^2+5^3+5^4+...+5^{61}\)
\(\Leftrightarrow\)\(5M-M=\left(5^2+5^3+5^4+...+5^{61}\right)-\left(5+5^2+5^3+...+5^{60}\right)\)
\(\Leftrightarrow\)\(4M=5^{61}-5\)
\(\Leftrightarrow\)\(M=\frac{5^{61}-5}{4}\)
Vậy \(M=\frac{5^{61}-5}{4}\)
Cho M= 5+52+53+....+560
a, Tình M
b, Chứng minh M\(⋮6\)
c, Tìm số tự nhiên n biết M+5=5n-5
a) M = 5 + 52 + 53 + .... + 560
=> 5M = 5 . 5 + 52 . 5 + 53 . 5 + ... + 560 . 5
=> 5M = 52 + 53 + 54 + .... + 561
=> 5M - M = 561 - 5
=> 4M = 561 - 5
=> M = \(\frac{\text{5^{61} - 5}}{4}\)\(\frac{5^{61}-5}{4}\)
b) M = 5 + 52 + 53 + .... + 560
=> M = ( 5 + 52 ) + ( 53 + 54 ) + .... + ( 559 + 560 )
=> M = 5 . ( 50 + 51 ) + 53 . ( 50 + 51 ) + ... + 559 . ( 50 + 51 )
=> M = 5 . 6 + 53 . 6 + ... + 559 . 6
=> M = 6 . ( 5 + 53 + ... + 559 ) \(⋮\)6 => đpcm
bài 1. M=5+5^2+5^3+5^4+...+5^59+5^60
a)tính giá trị biểu thức 4M+5
M = 5 + 52 + 53 + 54 + ... + 559 + 560
5.M = 52 + 53 + 54 + 55 + ... + 560 + 561
5M - M =(52 + 53 + 54 + .... + 560 + 561) - (5 + 52 + 53 + ... + 559 + 560)
4M = 52 + 53 + 54 + .... + 560 + 561 - 5 - 52 - 53 - ...- 559 - 560
4M = (52 - 52) + (53 - 53) + ....+ (560 - 560) + (561 - 5)
4M = 561 - 5
4M + 5 = 561 - 5 + 5
4M = 561
Bài 1: So sánh giá trị các biểu thức M và N biết:
a, 30 - 2 mũ 20 : 2 mũ 18 và N = 3 mũ 5 : (1 mũ 2021 + 2 mũ 3)
Bài 2: Thực hiện phép tính
a, 2 mũ 3 x 19 - 2 mũ 3 x 14 + 1 mũ 2020
b,10 mũ 2 - [ 60 : (5 mũ 6 : 5 mũ 4 - 3 x 5)]
c,160 : {17 + [3 mũ 2 x 5 - (14 + 2 mũ 7 : 2 mũ 4)}]
d,798 + 100 : [16 - 2(5 mũ 2 - 22)]
Bài 3:Tính giá trị của biểu thức có chứa chữ sau:
a, t mũ 2 + 5t - 6 khi t = 2
b,(a + b) mũ 2 - (b - a) mũ 3 + 2021 khi a = 5 ; b = a + 1
c, x mũ 3 - 3 x mũ 2 y + 3xy mũ 2 - y mũ 3 khi x = 3 ; y = 2
ALO CÁC BẠN ƠI GIÚP MÌNH VỚI Ạ!!!!
Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)
Bài 2 :
a) \(...=2^3\left(19-14\right)+1=8.5+1=41\)
b) \(...=100-\left[60:\left(5^2-15\right)\right]=100-\left[60:10\right]=100-6=94\)
c) \(...=160:\left[17+\left(9.5-\left(14+2^3\right)\right)\right]=160:\left[17+\left(45-22\right)\right]=160:\left[17+23\right]=160:40=4\)
d) \(...=798+100\left[16-2\left(25-22\right)\right]=798+100\left[16-2.3\right]=798+100.10=798+1000=1798\)
Tính giá trị của biểu thức
\(A = \frac{{ - 2}}{3} - \left( {\frac{m}{n} + \frac{{ - 5}}{2}} \right).\frac{{ - 5}}{8}\) nếu \(\frac{m}{n}\) nhận giá trị là:
a) \(\frac{{ - 5}}{6};\) b) \(\frac{5}{2}\); c) \(\frac{2}{{ - 5}}\)
a) Với \(\frac{m}{n} = \frac{{ - 5}}{6}\), giá trị của biểu thức là:
\(\begin{array}{l}A = \frac{{ - 2}}{3} - \left( {\frac{{ - 5}}{6} + \frac{{ - 5}}{2}} \right).\frac{{ - 5}}{8}\\A = \frac{{ - 2}}{3} - \frac{{-20}}{6}.\frac{{ - 5}}{8}\\A = \frac{{ - 2}}{3} - \frac{{ 25}}{{12}}\\A = \frac{{ - 33}}{{12}}\end{array}\)
b) Với \(\frac{m}{n} = \frac{5}{2}\) , giá trị của biểu thức là:
\(\begin{array}{l}A = \frac{{ - 2}}{3} - \left( {\frac{5}{2} + \frac{{ - 5}}{2}} \right).\frac{{ - 5}}{8}\\A = \frac{{ - 2}}{3} - 0.\frac{{ - 5}}{8} = \frac{{ - 2}}{3}\end{array}\)
c) Với \(\frac{m}{n} = \frac{2}{{ - 5}}\) , giá trị của biểu thức là:
\(\begin{array}{l}A = \frac{-2}{3} - \left( {\frac{2}{{ - 5}} + \frac{{ - 5}}{2}} \right).\frac{{ - 5}}{8}\\A = \frac{-2}{3} - \left( {\frac{{ - 4}}{{10}} + \frac{{ - 25}}{{10}}} \right).\frac{{ - 5}}{8}\\A = \frac{-2}{3} - \frac{{ - 29}}{{10}}.\frac{{ - 5}}{8}\\A = \frac{-2}{3} - \frac{{29}}{{16}}\\A = \frac{{-32}}{{48}} - \frac{{87}}{{48}}\\A = \frac{{ - 119}}{{48}}\end{array}\).
Tính giá trị biểu thức :
a) 5(x-y) với x=-4;y=2
b) -3(a+b) với a=-8;b=10
c) (m+n)(m-n) với m=-3;n=-5
d) -4(c+d)+5(d-c) với c=3;d= -1
a) 5(-4-2 )
= 5 . -6
= -30 .
b) -3(-8+10)
= -3 . 2
= 6 .
c) (-3+-5)(-3-5)
= -8 . -8
= - 64 .
d) -4(3+-1)+5(d-c)
= -4 . 2 + 5(d-c)
= -8 + 5(d-c)
phần d bạn chưa ghi d,c bằng bao nhiêu nên mình làm tới đó thôi, ủng hộ mk nhé !
Cho M(x) = 2x^5 - 4x^3 + 2x^2 + 10x - 1
và N(x) = -2x^5 + 2x^4 + 4x^3 + x^2 + x - 10
a/. Tính M(x) + N(x)
b/. Tìm A(x), biết A(x) + M(x) = N(x)
a/Ta có: M(x)+N(x) = (2x5 - 4x3 + 2x2 + 10x - 1) + (-2x5 + 2x4 + 4x3 + x2 + x - 10)
= 2x5 - 2x5 - 4x3 + 4x3 + 2x4 + 2x2 + x2 + 10x + x -1 - 10
= 2x4 + 3x2 + 11x - 11
b/ Ta có: A(x) = N(x)-M(x) = (-2x5 + 2x4 + 4x3 + x2 + x - 10) - (2x5 - 4x3 + 2x2 + 10x - 1)
= -2x5 - 2x5 + 2x4 + 4x3 + 4x3 + x2 - 2x2 + x - 10x -10 + 1
= -2x5 + 2x4 + 8x3 - x2 - 9x -9