Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 1 2018 lúc 14:13

Lăng
Xem chi tiết
Trần Minh Hoàng
9 tháng 1 2021 lúc 16:32

Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).

Vậy pt vô nghiệm nguyên.

Trần Minh Hoàng
9 tháng 1 2021 lúc 16:41

2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).

Trần Việt Khoa
Xem chi tiết
Akai Haruma
6 tháng 3 2021 lúc 23:09

Lời giải:

PT $\Leftrightarrow 3x^2+x(5y-8)-(2y^2+9y+4)=0$

Coi đây là pt bậc 2 ẩn $x$. Để pt có nghiệm nguyên thì:

$\Delta=(5y-8)^2+12(2y^2+9y+4)=t^2$ với $t\in\mathbb{N}$)

$\Leftrightarrow 49y^2+28y+112=t^2$

$\Leftrightarrow (7y+2)^2+108=t^2$

$\Leftrightarrow 108=(t-7y-2)(t+7y+2)$

Đến đây là dạng phương trình tích đơn giản rồi. Bạn chỉ cần xét TH. Lưu ý rằng $t+7y+2>0$ và $t-7y-2, t+7y+2$ có cùng tính chẵn lẻ.

Thảo Triệu
Xem chi tiết
29 Phúc Hưng
Xem chi tiết
Nguyễn Minh Quang
20 tháng 3 2022 lúc 12:52

từ phương trình số 2 ta có 
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)

lần lượt thay vào 1 ta có 

\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)

vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 6 2017 lúc 12:42

Ta xét các phương án:

(I) có: 

(II) có:

(III) tương đương : x2+ y2 – 2x - 3y + 0,5= 0.

phương trình này có:

Vậy chỉ (I) và (III) là phương trình đường tròn.

Chọn D.

Khánh Dương
Xem chi tiết
Nguyễn Duy Khang
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 2 2023 lúc 11:08

a: \(\Leftrightarrow\dfrac{y+5}{y\left(y-5\right)}-\dfrac{y-5}{2y\left(y+5\right)}=\dfrac{y+25}{2\left(y-5\right)\left(y+5\right)}\)

\(\Leftrightarrow2\left(y+5\right)^2-\left(y-5\right)^2=y^2+25y\)

=>\(2y^2+20y+50-y^2+10y-25=y^2+25y\)

=>30y+25=25y

=>5y=-25

=>y=-5(loại)

b: \(\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)=4x\)

=>x^2+x+x^2-3x-4x=0

=>2x^2-6x=0

=>2x(x-3)=0

=>x=0(nhận) hoặc x=3(loại)

c: =>x^2-9-6(2x+7)=-13(x+3)

=>x^2-9-12x-42+13x+39=0

=>x^2+x-6=0

=>(x+3)(x-2)=0

=>x=2(nhận) hoặc x=-3(loại)

Dung Vu
Xem chi tiết
Akai Haruma
27 tháng 12 2021 lúc 12:52

Lời giải:

PT $\Leftrightarrow x^2+x(3y-1)+(2y^2-2)=0$

Coi đây là pt bậc 2 ẩn $x$ thì:

$\Delta=(3y-1)^2-4(2y^2-2)=y^2-6y+9=(y-3)^2$. Do đó pt có 2 nghiệm:

$x_1=\frac{1-3y+y-3}{2}=-y-1$

$x_2=\frac{1-3y+3-y}{2}=2-2y$

Đến đây bạn thay vô pt ban đầu để giải pt bậc 2 một ẩn thui.