Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
你混過 vulnerable 他 難...
Xem chi tiết
Hải Nguyễn Lâm
Xem chi tiết
Dũng Lê Trí
7 tháng 9 2017 lúc 10:11

a) + b) + c)

A B C D H K

Vì chứng minh được câu a) thì khỏi cần chứng minh câu b) và c)

\(S_{ABD}=S_{BDC}\)

- Đáy AB = DC

- Có chiều cao bằng chiều cao của hình bình hành ( AH = BK)

\(S_{ADC}=S_{ABC}\)

- Đáy AB = DC 

- Có chiều cao bằng chiều cao hình bình hành

Vì vậy có thể kết luận rằng :\(S_{ABD}=S_{BDC}=S_{ABC}=S_{ACD}\)

\(S_{ABD}=S_{OAB}+S_{AOD}\)

\(S_{ADC}=S_{AOD}+S_{DOC}\)

Vì có chung diện tích AOD nên S OAB = S DOC

Tương tự...

Nguyễn Thị Thu Hiền
Xem chi tiết
Nguyễn Việt Hoàng
26 tháng 3 2020 lúc 21:00

Từ O lẻ đường thẳng d vuông góc với AB ở H1, cắt CD ở H2.

Ta có OH1 ⊥ AB

Mà AB // CD

Nên OH2 ⊥ CD

Do đó :

SABO+ SCDO= \(\frac{1}{2}\)OH1.AB+\(\frac{1}{2}\)OH2.CD = \(\frac{1}{2}AB\left(OH_1+OH_2\right)\) = \(\frac{1}{2}AB.H_1H_2\)

Nên SABO+ SCDO = \(\frac{1}{2}\)SABCD (1)

Tương tự SBCO + SDAO = \(\frac{1}{2}S_{ABCD}\) (2)

Từ (1) và (2) suy ra :

SABO + SCDO = SBCO + SDAO

Khách vãng lai đã xóa
Tiến Nguyễn Minh
Xem chi tiết
Upin & Ipin
16 tháng 12 2019 lúc 20:30

Bai 1

Bo de :  \(\Delta ABC\) trung tuyen AD 

\(\Rightarrow S_{ADB}=S_{ADC}\)

cai nay ban tu chung minh nha

Ap dung bo de va bai nay => \(S_{MNPQ}=S_{MQP}+S_{MNP}=\frac{1}{3}S_{MDC}+\frac{1}{3}S_{ABP}\)

ta phai chung minh \(S_{MDC}+S_{ABP}=S_{ABCD}\)

That vay co \(S_{AMP}=S_{AMD},S_{MBP}=S_{MBC}\)

=> \(S_{ABP}+S_{MDC}=S_{ADM}+S_{MDC}+S_{MBC}=S_{ABCD}\)

=> dpcm

Khách vãng lai đã xóa
Tiến Nguyễn Minh
16 tháng 12 2019 lúc 20:50

Hình như sai ở dòng thứ 2 từ dưới lên trên ấy

Khách vãng lai đã xóa
Upin & Ipin
16 tháng 12 2019 lúc 21:07

dung toi do ban chac ban ve hinh khac mik nen chac nhin khong giong thoi chu mik kiem tra lai roi do

Khách vãng lai đã xóa
Edogawa Conan
Xem chi tiết
Ngoc An Pham
Xem chi tiết
Ngô Bảo Châu
Xem chi tiết
Lê Khắc Vũ
Xem chi tiết
TXT Channel Funfun
Xem chi tiết