chứng minh đa thức (x+3)(x-11)+2014 luôn dương với mọi x
1/ Chứng minh đa thức sau luôn dương với mọi x:
x2 - x + 1
2/ Chứng minh các đa thức sau luôn âm với mọi x:
a) (x - 3)(1 - x) - 2
b) (x + 4)(2 - x) - 10
\(1,x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0=>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) (với mọi x)
Vậy ........
\(2,a,\left(x-3\right)\left(1-x\right)-2=x-x^2-3+3x-2=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)=-\left(x^2-2.x.2+2^2+1\right)=-\left[\left(x-2\right)^2+1\right]=-1-\left(x-2\right)^2\)
Vì \(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>-1-\left(x-2\right)^2\le-1< 0\) (với mọi x)
Vậy........
\(b,\left(x+4\right)\left(2-x\right)-10=2x-x^2+8-4x-10=-x^2-2x-2=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)\)
\(=-\left(x^2+2.x.1+1^2+1\right)=-\left(x+1\right)^2+1=-1-\left(x+1\right)^2\le-1< 0\) (với mọi x)
Vậy.......
Chứng minh giá trị của biểu thức sau luôn dương với mọi giá trị của biến:
a) x4+x2+2
b)(x+3)(x-11)+2014
\(x^4+x^2+2=\) \(\left(x^2\right)^2+2.x^2.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)
\(=\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}>0\)với mọi x
\(\left(x+3\right)\left(x-11\right)+2014=\) \(x^2-11x+3x-33+2014\)
\(=\) \(x^2-8x+1981\)
\(=\) \(x^2-2.x.4+16+1965\)
\(=\) \(\left(x-4\right)^2+1965>0\)với mọi x
Chứng minh rằng với mọi giá trị của x thì giá trị của đa thức :
f(x) = (x-3)(x-5)+2 luôn luôn có giá trị dương
Chứng minh rằng đa thức x^4+2x^2+1 luôn nhận giá trị dương với mọi x
\(x^4+2x^2+1=\left(x^2+1\right)^2\ge1>0\forall x\) ( đpcm )
`x^4+2x^2+1`
`=(x^2)^2 + 2.x^2 .1 + 1^2`
`=(x^2+1)^2 > 0 forall x`.
Chứng minh rằng đa thức này luôn dương với mọi x
x2 - x + 2
x2 -x + 2 = x2 - 2x.\(\frac{1}{2}\) + \(\frac{1}{4}\) +\(\frac{7}{4}\)
= (x -\(\frac{1}{2}\) )2 + \(\frac{7}{4}\)
Cho đa thức:
P(x)= x^8-x^7+x^5-x^3+1
Chứng minh rằng P(x) luôn dương với mọi giá trị x thuộc Q
Chứng minh rằng đa thức này trong phép chia luôn dương với mọi x
x2 - x + 2
theo đề bài ta có
x^2-x-2
=x^2-2x1/2+1/4-1/4+2
=(x^2-2x1/2+1/4)+(2-1/4)
=(x-1/2)^2+7/4
vì (x-1/2)^2>0
=>(x-1/2)^2+7/4>7/4
vậy đa thức này trong phép chia luôn dương với mọi x
Chứng minh rằng hiệu của hai đa thức 1,2x4 +0,4x2 -3 và 0,2x4 +0,4x2 -9 luôn dương với mọi giá trị thực của x.
Lời giải:
$(1,2x^4+0,4x^2-3)-(0,2x^4+0,4x^2-9)=x^4+6=(x^2)^2+6\geq 0+6>0$ với mọi giá trị thực của $x$
Do đó ta có đpcm.
chứng minh
a) đa thức f(x)=2x^2-8x+25 luôn dương vơi mọi x
b) đa thức g(x)=-x^2+7x-43 luôn âm với mọi x
ai làm nhanh chi tiết đúng thì sẽ dc tick
a,đa thức f(x)=2x^2-8x+25 luôn dương vơi mọi x
ta có 2x^2 luôn dương
25 là số dương
Th1:8x là số âm
Suy ra f(x)2x^2-(-8x)+25(dpcm)
Th2:8x là số dương
Vì 2x^x\(\ge\)8x suy ra 2x^2-8x\(\ge\)0
Ko chắc vì làm theo suy nghĩ của t :V
cho mk sửa lại:
\(f\left(x\right)=2x^2-8x+25=2.\left(x^2-4x+4\right)+17=2.\left(x-2\right)^2+17>0\forall x\)
\(g\left(x\right)=-x^2+7x-43=-\left(x^2-7x+43\right)=-\left(x^2-7x+\frac{49}{4}-\frac{49}{4}+43\right)\)
\(=-\left(x-\frac{7}{2}\right)^2-\frac{123}{4}< 0\forall x\)
Vậy....